photonic crystals with short-range ordered structures have aroused extensive interest in scientific research owing to their structural color independent of angle variation. This unique property sets mateirals free from the angle-dependent color variation and plays a critical role in the practical applications involving color observation. However
such fascinating applications may be undesirably compromised by the poor durability of photonic crystals due to their delicate structures. In this study
we developed a series of polyborosiloxane-based photonic elastomers that possessed angle-independent structural color and self-healing capability. Specifically
hydroxyl-terminated poly(dimethylsiloxane) (Hydroxyl-PDMS) was reacted with boric acid (BA) by forming reversible dynamic covalent bonds
dative bonds
and hydrogen bonds
and as-obtained polyborosiloxane (PBS) elastomers were further incorporated with isotropically arranged SiO
2
nanoparticles (NPs) and carbon black NPs. Optical properties of the photonic elastomers were characterized by reflection spectroscopy at varied detection angles
and angle independence was found for structural colors. Futhermore
the structural color of these elastomers could be tuned by simply adjusting the size or loading fraction of the SiO
2
NPs in elastomers. The mateirals obtained had a Young’s modulus up to ~200 kPa and also exhibited mechanochromic behavior thanks to the good flexibility of polymeric matrix. Moreover
the intriguing combination of flexibility with reversible bonding endowed the photonic elastomers with a rapid self-healing ability towards superficial scratches or cuts at room temperature
which in turn afforded the necessary durabilities both optically and mechanically. In addition
since photonic elastomer films with a large area could be readily fabricated through a simple spray-coating process
the materials developed have shown great prospects for applications in color-coating
Liu J, Ren J, Xie Z, Guan B, Wang J, Ikeda T, Jiang L . Nanoscale , 2018 . 10 ( 10 ): 4642 - 4649 . DOI:10.1039/C7NR09387Jhttp://doi.org/10.1039/C7NR09387J .
Liu J, Wang L, Zhang M, Jiang K, Song K, Wang J, Ikeda T, Jiang L . Adv Funct Mater , 2017 . 27 ( 7 ): 1605221 - 1605228 . DOI:10.1002/adfm.v27.7http://doi.org/10.1002/adfm.v27.7 .
Kuang M, Wang J, Jiang L . Chem Soc Rev , 2016 . 45 ( 24 ): 6833 - 6854 . DOI:10.1039/C6CS00562Dhttp://doi.org/10.1039/C6CS00562D .
Liu J, Xie Z, Shang Y, Ren J, Hu R, Guan B, Wang J, Ikeda T, Jiang L . ACS Appl Mater Interfaces , 2018 . 10 ( 7 ): 6701 - 6710 . DOI:10.1021/acsami.7b17936http://doi.org/10.1021/acsami.7b17936 .
Oh J W, Chung W J, Heo K, Jin H E, Lee B Y, Wang E, Zueger C, Wong W, Meyer J, Kim C, Lee S Y, Kim W G, Zemla M, Auer M, Hexemer A, Lee S W . Nat Commun , 2014 . 5 ( 3 ): 3043 - 3050.
Li Q, Zhang Y, Shi L, Qiu H, Zhang S, Qi N, Hu J, Yuan W, Zhang X, Zhang K Q . ACS Nano , 2018 . 12 ( 4 ): 3095 - 3102 . DOI:10.1021/acsnano.7b08259http://doi.org/10.1021/acsnano.7b08259 .
Lee G H, Choi T M, Kim B, Han S H, Lee J M, Kim S H . ACS Nano , 2017 . 11 ( 11 ): 11350 - 11357 . DOI:10.1021/acsnano.7b05885http://doi.org/10.1021/acsnano.7b05885 .
Wang W, Fan X, Li F, Qiu J, Umair M M, Ren W, Ju B, Zhang S, Tang B . Adv Optical Mater , 2018 . 6 ( 4 ): 1701093 - 1701102 . DOI:10.1002/adom.v6.4http://doi.org/10.1002/adom.v6.4 .
Xiao F, Sun Y, Du W, Shi W, Wu Y, Liao S, Wu Z, Yu R . Adv Funct Mater , 2017 . 27 ( 42 ): 1702147 - 1702153 . DOI:10.1002/adfm.v27.42http://doi.org/10.1002/adfm.v27.42 .
Jia X, Zhang T, Wang J, Wang K, Tan H, Wang J, Hu Y, Zhang L, Zhu J . Langmuir , 2018 . 34 ( 13 ): 3987 - 3992 . DOI:10.1021/acs.langmuir.8b00186http://doi.org/10.1021/acs.langmuir.8b00186 .
Forster J D, Noh H, Liew S F, Saranathan V, Schreck C F, Yang L, Park J G, Prum R O, Mochrie S G, O’Hern C S, Cao H, Dufresne E R . Adv Mater , 2010 . 22 ( 26-27 ): 2939 - 2944 . DOI:10.1002/adma.200903693http://doi.org/10.1002/adma.200903693 .
Takeoka Y, Honda M, Seki T, Ishii M, Nakamura H . ACS Appl Mater Interfaces , 2009 . 1 ( 5 ): 982 - 986 . DOI:10.1021/am900074vhttp://doi.org/10.1021/am900074v .
Wang F, Zhang X, Lin Y, Wang L, Zhu J . ACS Appl Mater Interfaces , 2016 . 8 ( 7 ): 5009 - 5016 . DOI:10.1021/acsami.5b11919http://doi.org/10.1021/acsami.5b11919 .
Kumano N, Seki T, Ishii M, Nakamura H, Takeoka Y . Angew Chem Int Ed , 2011 . 50 ( 17 ): 4012 - 4015 . DOI:10.1002/anie.201008182http://doi.org/10.1002/anie.201008182 .
Xia T, Luo W, Hu F, Qiu W, Zhang Z, Lin Y, Liu X Y . ACS Appl Mater Interfaces , 2017 . 9 ( 26 ): 22037 - 22041 . DOI:10.1021/acsami.7b04653http://doi.org/10.1021/acsami.7b04653 .
Chen W P, Hao D Z, Hao W J, Guo X L, Jiang L . ACS Appl Mater Interfaces , 2018 . 10 ( 1 ): 1258 - 1265 . DOI:10.1021/acsami.7b17118http://doi.org/10.1021/acsami.7b17118 .
Cash J J, Kubo T, Bapat A P, Sumerlin B S . Macromolecules , 2015 . 48 ( 7 ): 2098 - 2106 . DOI:10.1021/acs.macromol.5b00210http://doi.org/10.1021/acs.macromol.5b00210 .
Cui J, Del C A . Chem Commun , 2012 . 48 ( 74 ): 9302 - 9304 . DOI:10.1039/c2cc34701fhttp://doi.org/10.1039/c2cc34701f .
Zhou H, Xu G, Li J, Zeng S, Zhang X, Zheng Z, Ding X, Chen W, Wang Q, Zhang W . Macromol Res , 2015 . 23 ( 12 ): 1098 - 1102 . DOI:10.1007/s13233-015-3145-7http://doi.org/10.1007/s13233-015-3145-7 .
Wu J, Cai L H, Weitz D A . Adv Mater , 2017 . 29 ( 38 ): 1702616 - 1702623 . DOI:10.1002/adma.201702616http://doi.org/10.1002/adma.201702616 .
Takashima Y, Yonekura K, Koyanagi K, Iwaso K, Nakahata M, Yamaguchi H, Harada A . Macromolecules , 2017 . 50 ( 11 ): 4144 - 4150 . DOI:10.1021/acs.macromol.7b00875http://doi.org/10.1021/acs.macromol.7b00875 .
Fu F, Chen Z, Zhao Z, Wang H, Shang L, Gu Z, Zhao Y . Proc Natl Acad Sci USA , 2017 . 114 ( 23 ): 5900 - 5905 . DOI:10.1073/pnas.1703616114http://doi.org/10.1073/pnas.1703616114 .
Zhou J, Han P, Liu M, Zhou H, Zhang Y, Jiang J, Liu P, Wei Y, Song Y, Yao X . Angew Chem Int Ed , 2017 . 56 ( 35 ): 10462 - 10466 . DOI:10.1002/anie.v56.35http://doi.org/10.1002/anie.v56.35 .
Ge D, Lee E, Yang L, Cho Y, Li M, Gianola D S, Yang S . Adv Mater , 2015 . 27 ( 15 ): 2489 - 2495 . DOI:10.1002/adma.201500281http://doi.org/10.1002/adma.201500281 .
Tang M, Wang W, Xu D, Wang Z . Ind Eng Chem Res , 2016 . 55 ( 49 ): 12582 - 12589 . DOI:10.1021/acs.iecr.6b03823http://doi.org/10.1021/acs.iecr.6b03823 .
Liu Z, Picken S J, Besseling N A M . Macromolecules , 2014 . 47 ( 14 ): 4531 - 4537 . DOI:10.1021/ma500632fhttp://doi.org/10.1021/ma500632f .
Zeng Q, Ding C, Li Q, Yuan W, Peng Y, Hu J, Zhang K Q . RSC Adv , 2017 . 7 ( 14 ): 8443 - 8452 . DOI:10.1039/C6RA26526Jhttp://doi.org/10.1039/C6RA26526J .
Takeoka Y, Yoshioka S, Takano A, Arai S, Khanin N, Nishihara H, Teshima M, Ohtsuka Y, Seki T . Angew Chem Int Ed , 2013 . 52 ( 28 ): 7261 - 7265 . DOI:10.1002/anie.201301321http://doi.org/10.1002/anie.201301321 .
Wang F, Zhang X, Zhang L, Cao M, Lin Y, Zhu J . Dyes Pigments , 2016 . 130 202 - 208 . DOI:10.1016/j.dyepig.2016.03.022http://doi.org/10.1016/j.dyepig.2016.03.022 .
Preparation and Properties of Carboxylated Styrene-Butadiene/ Carboxylated Cellulose Nanocrystal Composites with Self-healing Properties
Combining Microphase Separation and Hydrogen-bonding Complexation to Construct Elastomer
Progress in Dynamic Covalent Polymers
Alginate-based Self-healing and pH-responsive Hydrogels Formed by Dynamic Covalent Bonding
Self-healing Hydrogels Based on Constitutional Dynamic Chemistry and Their Potential Biomedical Applications
Related Author
No data
Related Institution
School of Polymer Science and Engineering, Qingdao University of Science and Technology
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
School of Science, Xi’an Jiaotong University
Xi’an Key Laboratory of Sustainable Energy Material Chemistry