glass transition temperatures) play an important role in various applications of shape memory polymers that can recover from temporary shapes to original (permanent) shapes upon heating. This study reports a shape memory epoxy with unsaturated double bonds
enabling a secondary photocuring process. Dual-functional epoxy monomer
E44
and monofunctional epoxy monomer
glycidyl methacrylate
are first thermally cured
via
a polyether amine crosslinker. Properties of the cured epoxy can be finely tuned by controlling the feed compositions. The increase of feed ratio of glycidyl methacrylate will lead to lower glass transition temperature and elastic modulus
whereas larger strain at break. In the secondary photocuring process
the unsaturated bonds provided by glycidyl methacrylate are polymerized after light exposure
forming additional crosslinking points. As a result
the glass transition temperature of the material increases. Herein
digital photo-masking technique is applied for the photocuring process
via
a commercial projector. The regional exposure time of the material can be conducted
and thus
the local glass transition temperature can be controlled in a range of approximately 40 − 70 °C. Storage modulus at the rubbery state of the material increases from approximately 0.5 MPa to 8 MPa after photo exposure for 240 s
implying that there is a remarkable increase of the crosslinking density
via
the secondary photocuring. Both the materials before and after the secondary photocuring provide ideal shape memory performance. The shape fixity ratios and shape recovery ratios retain nearly 100% during six shape memory cycles
indicating good thermo-mechanical stability of the material. The material with regional controllable glass transition temperature enables a programmable multi-shape recovery process. Complex original shapes can be fabricated if the secondary photocuring is conducted towards a thermally cured epoxy. In addition
the material can be potentially applied as a novel substrate for stretchable electronics due to its strain isolation functionality.
Zhao Q, Qi H J, Xie T . Prog Polym Sci , 2015 . 49-50 79 - 120 . DOI:10.1016/j.progpolymsci.2015.04.001http://doi.org/10.1016/j.progpolymsci.2015.04.001 .
Lendlein A, Behl M, Hiebl B, Wischke C . Expert Rev Med Devices , 2010 . 7 357 - 79 . DOI:10.1586/erd.10.8http://doi.org/10.1586/erd.10.8 .
Chen H M, Wang L, Zhou S B . Chinese J Polym Sci , 2018 . 36 905 - 917 . DOI:10.1007/s10118-018-2118-7http://doi.org/10.1007/s10118-018-2118-7 .
Zhang Y Y, Gao H J, Wang H, Xu Z Y, Chen X W, Liu B, Shi Y, Lu Y, Wen L F, Li Y, Li Z S, Men Y F, Feng X Q, Liu W G . Adv Funct Mater , 2018 . 28 1705962 DOI:10.1002/adfm.v28.9http://doi.org/10.1002/adfm.v28.9 .
Liu Y J, Du H Y, Liu L W, Leng J S . Smart Mater Struct , 2014 . 23 023001 DOI:10.1088/0964-1726/23/2/023001http://doi.org/10.1088/0964-1726/23/2/023001 .
Zhang G G, Peng W J, Wu J J, Zhao Q, Xie T . Nat Commun , 2018 . 9 4002 DOI:10.1038/s41467-018-06420-whttp://doi.org/10.1038/s41467-018-06420-w .
Dong J T, Zou W K, Chen F, Zhao Q . Chinese J Polym Sci , 2018 . 36 953 - 959 . DOI:10.1007/s10118-018-2119-6http://doi.org/10.1007/s10118-018-2119-6 .
Zhang X Z, Zhou Q Q, Liu H R, Liu H W . Soft Matter , 2014 . 10 3748 - 3754 . DOI:10.1039/c4sm00218khttp://doi.org/10.1039/c4sm00218k .
Lendlein A, Jiang H Y, Junger O, Langer R . Nature , 2005 . 434 875 - 882.
Yang L, Wang Z H, Fei G X, Xia H S . Macromol Rapid Commun , 2017 . 38 1700421 DOI:10.1002/marc.v38.23http://doi.org/10.1002/marc.v38.23 .
Xie T . Rousseau I A. Polymer , 2009 . 50 1852 - 1856.
Zheng N, Fang G Q, Cao ZL, Zhao Q, Xie T . Polym Chem , 2015 . 6 3046 - 3053 . DOI:10.1039/C5PY00172Bhttp://doi.org/10.1039/C5PY00172B .
Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A . P Natl Acad Sci USA , 2006 . 103 3540 - 3545 . DOI:10.1073/pnas.0600079103http://doi.org/10.1073/pnas.0600079103 .
Koerner H, Price G, Pearce NA, Alexander M, Vaia R A . Nat Mater , 2004 . 3 115 - 20 . DOI:10.1038/nmat1059http://doi.org/10.1038/nmat1059 .
Qi X, Yao X, Deng S, Zhou T, Fu Q . J Mater Chem A , 2014 . 2 2240 - 2249 . DOI:10.1039/C3TA14340Fhttp://doi.org/10.1039/C3TA14340F .
Liu Y, Zhang Q L, Feng J C . Polymer , 2018 . 146 267 - 274 . DOI:10.1016/j.polymer.2018.05.047http://doi.org/10.1016/j.polymer.2018.05.047 .
Lu W, Le X X, Zhang J W, Huang Y J, Chen T . Chem Soc Rev , 2017 . 46 1284 - 1294 . DOI:10.1039/C6CS00754Fhttp://doi.org/10.1039/C6CS00754F .
Dong Z Q, Cao Y, Yuan Q J, Wang Y F, Li J H, Li B J, Zhang S . Macromol Rapid Commun , 2013 . 34 867 - 872 . DOI:10.1002/marc.201300084http://doi.org/10.1002/marc.201300084 .
Pei Z Q, Yang Y, Chen Q M, Wei Y, Ji Y . Adv Mater , 2016 . 28 156 - 160 . DOI:10.1002/adma.201503789http://doi.org/10.1002/adma.201503789 .
Mao Y Q, Yu K, Isakov M S, Wu J, Dunn M L, Qi H J . Sci Rep , 2015 . 5 13616 - 13628 . DOI:10.1038/srep13616http://doi.org/10.1038/srep13616 .
Cao Y, Zhang G G, Zhang Y C, Yue M K, Chen Y, Cai S S, Xie T, Feng X . Adv Funct Mater , 2018 . 28 1804604 .
Nair D P, Cramer N B, Gaipa J C, McBride M K, Matherly E M, McLeod R R, Shandas R, Bowman C N . Adv Funct Mater , 2012 . 53 2429 - 2438.
Huang L M, Jiang R Q, Wu J J, Song J Z, Bai H, Li B G, Zhao Q, Xie T . Adv Mater , 2017 . 29 1605390 DOI:10.1002/adma.201605390http://doi.org/10.1002/adma.201605390 .
Zhao Q, Zou W, Luo Y, Xie T . Sci Adv , 2016 . 2 e1501297 DOI:10.1126/sciadv.1501297http://doi.org/10.1126/sciadv.1501297 .
Zheng N, Fang Z Z, Zou W K, Zhao Q, Xie T . Angew Chem Int Ed , 2016 . 55 11421 - 11425 . DOI:10.1002/anie.201602847http://doi.org/10.1002/anie.201602847 .
Ware T, Simon D, Hearon K, Liu C, Shah S, Reeder J, Khodaparast N, Kilgard M P, Maitland D J, Rennaker R L, Voit W E . Macromol Mater Eng , 2012 . 297 1193 - 1202 . DOI:10.1002/mame.v297.12http://doi.org/10.1002/mame.v297.12 .
Wu J J, Huang L M, Zhao Q, Xie T . Chinese J Polym Sci , 2018 . 36 ( 5 ): 563 - 575 . DOI:10.1007/s10118-018-2089-8http://doi.org/10.1007/s10118-018-2089-8 .
Bio-based Epoxy Resin: Controllable Degradation, Chemical Recovery and Antimicrobial Property
Epoxy-resin-based Slippery Liquid Infused Anti-icing Coating Based on Breath Figure
Mechanically Robust and Healable Poly(vinyl alcohol)-based Shape Memory Supramolecular Plastics
Polymers for Photoinduced Reversible Solid-to-Liquid Transitions
Synthesis and Healing Behavior of Thermo-reversible Self-healing Epoxy Resins
Related Author
No data
Related Institution
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
School of Chemical Engineering and Technology, Sun Yat-sen University
State Key Laboratory of Supramolecular Molecular Structure and Materials, College of Chemistry, Jilin University
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer science and Engineering, University of Science and Technology of China
School of Mechatronic Engineering, Lanzhou Jiaotong University