Gene therapy is widely concerned as an excellent treatment for cancer. One of the most important things in gene therapy is to construct gene delivery systems with good biodegradability
biocompatibility
and gene delivery capability. Biodegradable non-viral gene vectors based on different microenvironments between cancer cells and normal cells have been paid more attention. In this work
the reduction-responsive branched polylysine (SS-HP) with disulfide bonds was synthesized
via
a one-pot ring-opening reaction. To make a comparison
the branched polylysine without disulfide bonds (CC-HP) was synthesized by the same method. All the SS-HP/pDNA and CC-HP/pDNA complexes with various weight ratios were prepared by mixing polycation-based solution and pDNA solution completely
and stood for 30 min. The particle size and zeta potential of SS-HP/pDNA and CC-HP/pDNA were measured by dynamic light scattering (DLS). The degradability of polyplexes in reductive environment was visualized by agarose gel electrophoresis and atomic force microscopy (AFM). The
in vitro
transfection efficiencies and cell viability of SS-HP and CC-HP were evaluated in C6 and HepG2 cell lines using luciferase reporter gene
green fluorescence protein gene
and MTT assay. The concentration of reductive glutathione (GSH) is higher in some cancer cells than that in normal cells. SS-HP showed high gene transfection efficiency
in vitro
due to the breakdown of reduction-responsive disulfide bonds. Moreover
SS-HP exhibited low cytotoxicity due to the good biodegradability of SS-HP and plenty of hydroxy groups induced by ring-opening reactions. KillerRed protein is a red fluorescence protein which could produce reactive oxygen species (ROS) upon the induction of visible light. From
in vitro
antitumor assays
the plasmid pKillerRed (pKR) delivered by SS-HP was expressed in C6 cells. KillerRed protein expressed in C6 cells could contribute to the cell apoptosis
via
photodynamic therapy (PDT). This study provides a novel approach for designing the next-generation gene delivery systems.
Mahalingam S M, Kularatne S A, Myers C H, Gagare P, Norshi M, Liu X, Singhal S, Low P S . J Med Chem , 2018 . 61 ( 21 ): 9637 - 9646 . DOI:10.1021/acs.jmedchem.8b01115http://doi.org/10.1021/acs.jmedchem.8b01115 .
Chen J, Tian H, Dong X, Guo Z, Jiao Z, Li F, Kano A, Maruyama A, Chen X . Macromol Biosci , 2013 . 13 ( 10 ): 1438 - 1446 . DOI:10.1002/mabi.201300211http://doi.org/10.1002/mabi.201300211 .
Guan X, Li Y, Jiao Z, Lin L, Chen J, Guo Z, Tian H, Chen X . ACS Appl Mater Interfaces , 2015 . 7 ( 5 ): 3207 - 3215 . DOI:10.1021/am5078123http://doi.org/10.1021/am5078123 .
Wang Y, Xiao H, Fang J, Yu X, Su Z, Cheng D, Shuai X . Chem Commun , 2016 . 52 ( 6 ): 1194 - 1197 . DOI:10.1039/C5CC09181Khttp://doi.org/10.1039/C5CC09181K .
Liu X, Xiang J J, Zhu D C, Jiang L M, Zhou Z X, Tang J B, Liu X R, Huang Y Z, Shen Y Q . Adv Mater , 2016 . 28 ( 9 ): 1743 - 1752 . DOI:10.1002/adma.201504288http://doi.org/10.1002/adma.201504288 .
Putnam D . Nat Mater , 2006 . 5 ( 6 ): 439 - 451 . DOI:10.1038/nmat1645http://doi.org/10.1038/nmat1645 .
Kim H, Kim W J . Small , 2014 . 10 ( 1 ): 117 - 126 . DOI:10.1002/smll.201202636http://doi.org/10.1002/smll.201202636 .
Yamano S, Dai J, Hanatani S, Haku K, Yamanaka T, Ishioka M, Takayama T, Yuvienco C, Khapli S, Moursi A M, Montclare J K . Biomaterials , 2014 . 35 ( 5 ): 1705 - 1715 . DOI:10.1016/j.biomaterials.2013.11.012http://doi.org/10.1016/j.biomaterials.2013.11.012 .
Qian X, Long L, Shi Z, Liu C, Qiu M, Sheng J, Pu P, Yuan X, Ren Y, Kang C . Biomaterials , 2014 . 35 ( 7 ): 2322 - 2335 . DOI:10.1016/j.biomaterials.2013.11.039http://doi.org/10.1016/j.biomaterials.2013.11.039 .
Li Y, Bing X, Tao B, Liu W . Biomaterials , 2015 . 55 12 - 23 . DOI:10.1016/j.biomaterials.2015.03.034http://doi.org/10.1016/j.biomaterials.2015.03.034 .
Ma D, Lin Q M, Zhang L M, Liang Y Y, Xue W . Biomaterials , 2014 . 35 ( 14 ): 4357 - 4367 . DOI:10.1016/j.biomaterials.2014.01.070http://doi.org/10.1016/j.biomaterials.2014.01.070 .
Wang D, Zhao T, Zhu X, Yan D, Wang W . Chem Soc Rev , 2015 . 44 ( 12 ): 4023 - 4071 . DOI:10.1039/C4CS00229Fhttp://doi.org/10.1039/C4CS00229F .
Jin H, Huang W, Zhu X, Zhou Y, Yan D . Chem Soc Rev , 2012 . 41 ( 18 ): 5986 - 5997 . DOI:10.1039/c2cs35130ghttp://doi.org/10.1039/c2cs35130g .
Huang Y, Wang D, Zhu X, Yan D, Chen R . Polym Chem , 2015 . 6 ( 15 ): 2794 - 2812 . DOI:10.1039/C5PY00144Ghttp://doi.org/10.1039/C5PY00144G .
Wang K, Peng H, Thurecht K J, Puttick S, Whittaker A K . Polym Chem , 2016 . 7 ( 5 ): 1059 - 1069 . DOI:10.1039/C5PY01707Fhttp://doi.org/10.1039/C5PY01707F .
Huang Y, Ding X, Qi Y, Yu B, Xu F J . Biomaterials , 2016 . 106 134 - 143 . DOI:10.1016/j.biomaterials.2016.08.025http://doi.org/10.1016/j.biomaterials.2016.08.025 .
Fletcher N L, Houston Z H, Simpson J D, Veedu R N, Thurecht K J . Chem Commun , 2018 . 54 ( 82 ): 11538 - 11541 . DOI:10.1039/C8CC05831Hhttp://doi.org/10.1039/C8CC05831H .
Zhang C, Moonshi S S, Wang W, Ta H T, Han Y, Han F Y, Peng H, Kral P, Rolfe B E, Gooding J J, Gaus K, Whittaker A K . ACS Nano , 2018 . 12 ( 9 ): 9162 - 9176 . DOI:10.1021/acsnano.8b03726http://doi.org/10.1021/acsnano.8b03726 .
Zhang S, Liu Y, Derakhshanfar S, He W, Huang Q, Dong S, Rao J, Luo G X, Zhong W, Liao W, Shi M, Xing M . Adv Healthc Mater , 2018 . 1800118 .
Xu H, Cao W, Zhang X . Acc Chem Res , 2013 . 46 ( 7 ): 1647 - 1658 . DOI:10.1021/ar4000339http://doi.org/10.1021/ar4000339 .
Qi Y, Song H, Xiao H, Cheng G, Yu B, Xu F J . Small , 2018 . 14 ( 42 ): 1803061 DOI:10.1002/smll.v14.42http://doi.org/10.1002/smll.v14.42 .
Liao Z, Li Y, Lu H, Sung H . Biomaterials , 2014 . 35 ( 1 ): 500 - 508 . DOI:10.1016/j.biomaterials.2013.09.075http://doi.org/10.1016/j.biomaterials.2013.09.075 .
Tseng S, Liao Z, Kao S, Zeng Y, Huang K, Li H, Yang C, Deng Y, Huang C, Yang S, Yang P, Kempson I . Nat Commun , 2015 . 6 6456 DOI:10.1038/ncomms7456http://doi.org/10.1038/ncomms7456 .
Ping Y, Liu C D, Tang G P, Li J S, Li J, Yang W T, Xu F J . Adv Funct Mater , 2010 . 20 ( 18 ): 3106 - 3116 . DOI:10.1002/adfm.201000177http://doi.org/10.1002/adfm.201000177 .
Synthesis and Characterization of Degradable Branched Polymers with Pendant Vinyl Bonds
Synthesis of Branched Butyl Rubber with Bimodal Distribution by Cationic Polymerization and Its Structures and Properties
DESIGN AND SYNTHESIS OF RAPIDLY PHOTO-CROSSLINKABLE BIOACTIVE BIODEGRADABLE HYDROGELS
STUDIES ON THE BRANCHING STRUCTURE OF POLYMERS USING DIVINYL MONOMERS AS THE BRANCHING AGENT
SYNTHESIS OF BRANCHED POLY(METHYL ACRYLATE) VIA SINGLE ELECTRON TRANSFER LIVING RADICAL POLYMERIZATION
Related Author
No data
Related Institution
Jiangsu Key Laboratory of Material surface technology, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University
Department of Material Science and Engineering, Beijing Institute of Petrochemical Thechnology Beijing
Beijing Key Laboratory of Special Elastomer Composites
Polyolefin Catalyst Laboratory, Petrochemical Research Institute, Petrochina
Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials, Soochow University