a very simple method for preparing a mechanically strong
highly adhesive
and biocompatible hydrogel was reported. The aqueous solution of
N
-acryloyl-2-aminoacetic acid (ACG) and nano-bioactive glass (BG) was mixed
followed by UV light irradiation to initiate polymerization for preparing the PACG-BG nano-hybrid hydrogels rapidly. The intermolecular hydrogen bonds from PACG chains
coordination between PACG-end carboxyls and metal ions of BG
as well as PACG-BG physical interaction collectively formed multiple physical crosslinks
were contributed to the increased mechanical strengths. The studies of PACG-BG hydrogels demonstrated that tunable mechanical properties
adhesion abilities
and room temperature self-healing ability could be adjusted by changing the contents of ACG and BG. The adhesion strengths of the hydrogels were tested by tension loading in lap-shear mode. The results indicated that at 25 wt% ACG and 6 wt% BG (relative to ACG)
the hydrogels could achieve a balance between surface adhesion and cohesion energies; in this case
the maximum instant adhesion strengths toward pig’s skin
ion sheet
and ceramic were measured to be 120
142
and 125 kPa
respectively
and the adhesion strengths of hydrogels toward pig skin
ion sheet
and ceramics was presumably originated from the enrichment of PACG chains to the substrates facilitated by the BG nanoparticles. This allowed more carboxyl groups on the hydrogel surface to form hydrogen bonds
ionic coordination
and dipole interactions with the adherends
consequently leading to the enhanced adhesion to these materials. Intriguingly
the highest tensile strength of the hydrogel was as high as 0.9 MPa
fracture energy could reach 1500 J m
−2
and self-healing efficiency could reach 100% after 12 h at room temperature without manual intervention. The outcomes of
in vivo
implantation showed that the hydrogel possessed better biocompatibility. In light of its robust adhesion to biological soft tissues
the hydrogel was used for
in vitro
adhering and mending the animal’s gastric perforation. The results revealed that the hydrogel could adhere firmly to the perforated stomach
thus preventing leakage of gastric fluid. This novel organic-inorganic hybrid hydrogel holds promising potential as a biomedical first-aid bandage.
Anderson C A, Jones A R, Briggs E M, Novitsky E J, Kuykendall D W, Sottos N R, Zimmerman S C . J Am Chem Soc , 2013 . 135 7288 - 7295 . DOI:10.1021/ja4005283http://doi.org/10.1021/ja4005283 .
Bu Y Z, Zhang L C, Liu J H, Zhang L H, Li T T, Shen H, Wang X, Yang F, Tang P F, Wu D C . ACS Appl Mater Interfaces , 2016 . 8 12674 - 12683 . DOI:10.1021/acsami.6b03235http://doi.org/10.1021/acsami.6b03235 .
Sun L, Huang Y, Bian Z, Petrosino J, Fan Z, Wang Y, Park K H, Yue T, Schmidt M, Galster S . ACS Appl Mater Interfaces , 2016 . 8 2423 - 2434 . DOI:10.1021/acsami.5b11811http://doi.org/10.1021/acsami.5b11811 .
Jeon E Y, Wang B H, Yang Y J, Kim B J, Choi B H, Jung G Y, Cha H J . Biomaterials , 2015 . 67 11 - 19 . DOI:10.1016/j.biomaterials.2015.07.014http://doi.org/10.1016/j.biomaterials.2015.07.014 .
Zhao Q, Lee D W, Ahn B K, Seo S, Kaufman Y, Israelachvili J N, Waite J H . Nat Mater , 2016 . 15 407 - 412 . DOI:10.1038/nmat4539http://doi.org/10.1038/nmat4539 .
Sedo J, Poseu J S, Busque F, Molina D R . Adv Mater , 2013 . 25 653 - 658 . DOI:10.1002/adma.201202343http://doi.org/10.1002/adma.201202343 .
Shin M, Park S G, Oh B C, Kim K, Jo S, Lee M S, Song S, Hong S H, Shin E C, Kim K S, Kang S W, Lee H . Nat Mater , 2017 . 3 147 - 154.
Wang R, Li J Z, Chen W, Xu T T, Yun S F, Xu Z, Xu Z Q, Sato T, Chi B, Xu H . Adv Funct Mater , 2017 . 27 1604894 DOI:10.1002/adfm.v27.8http://doi.org/10.1002/adfm.v27.8 .
Shin J, Lee J S, Lee C, Park H J, Yang K, Jin Y, Ryu J H, Hong K S, Moon S H, Chung H M, Yang H S, Um S H, Oh J W, Kim D I, Lee H, Cho S W . Adv Funct Mater , 2015 . 25 3814 - 3824 . DOI:10.1002/adfm.v25.25http://doi.org/10.1002/adfm.v25.25 .
Zhang H, Bre L, Zhao T Y, Newland B, Costa M D, Wang W X . J Mater Chem B , 2014 . 2 4067 - 4071.
Bouten J M, Zonjee M, Bender J, Yauw T K, Goor H V, Hoogenboom R . Prog Polym Sci , 2014 . 39 1375 - 1405 . DOI:10.1016/j.progpolymsci.2014.02.001http://doi.org/10.1016/j.progpolymsci.2014.02.001 .
Burkett J R, Hight L M, Kenny P, Wilker J J . J Am Chem Soc , 2010 . 132 12531 - 12533 . DOI:10.1021/ja104996yhttp://doi.org/10.1021/ja104996y .
Walker G J . Mar Biol , 1972 . 52 429 - 435.
Szilagyi I, Trefalt G, Tiraferri A, Maroni P, Borkovec M . Soft Matter , 2014 . 10 2479 - 2502 . DOI:10.1039/c3sm52132jhttp://doi.org/10.1039/c3sm52132j .
Cui C Y, Wu T L, Gao F, Fan C C, Xu Z Y, Wang H B, Liu B, Liu W G . Adv Funct Mater , 2018 . 28 1804925 DOI:10.1002/adfm.201804925http://doi.org/10.1002/adfm.201804925 .
Li A, Jia Y F, Sun S T, Yu Y S, Minsky B, Colfen H, Guo X H . ACS Appl Mater Interfaces , 2018 . 28 10471 - 10479.
Meredith H J, Jenkins C L, Wilker J J . Adv Funct Mater , 2014 . 24 3259 - 3267 . DOI:10.1002/adfm.201303536http://doi.org/10.1002/adfm.201303536 .
Montarnal D, Capelot M, Tournilhac F, Leibler L . Science , 2011 . 334 965 - 967 . DOI:10.1126/science.1212648http://doi.org/10.1126/science.1212648 .
Rose S, Prevoteau A, Elziere P, Hourdet D, Marcellan A, Leibler L . Nature , 2014 . 505 382 - 385 . DOI:10.1038/nature12806http://doi.org/10.1038/nature12806 .
Gao F, Zhang Y Y, Li Y M, Xu B, Cao Z Q, Liu W G . ACS Appl Mater Interfaces , 2016 . 8 8956 - 8966 . DOI:10.1021/acsami.6b00912http://doi.org/10.1021/acsami.6b00912 .
Construction of Poly(lipoic acid)-based Functional Hydrogels for Infected Skin Wound Healing
Controllable Fabrication of Bentonite-based Hydrogel Adhesive for High-durability Conservation of Sandstone-based Cultural Heritage
Synthesis and Properties of Dynamic Hydrogels Based on Host-guest Chemistry of Cucurbit[8]uril and Its Two Different Homodimer Guests
Polysaccharide Based Injectable Self-healing Hydrogels with Glucose Responsive Drug Release Behavior
Mussel Adhesive Protein Inspired Chitin Nanowiskers Enhanced Adhesive Hydrogels for Wet Adhesion
Related Author
No data
Related Institution
School of Chemistry, Xi'an Jiaotong University
Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin