Yi Wang, Zhan-bin Feng, Hong-li Zuo, Bing Yu, Nan-ying Ning, Ming Tian, Li-qun Zhang. Preparation of Thermally Reversible Silicone Rubber/Carbon Nanotubes Composite with High Electrical Conductivity Based on Diels-Alder Reaction. [J]. Acta Polymerica Sinica 50(5):485-495(2019)
DOI:
Yi Wang, Zhan-bin Feng, Hong-li Zuo, Bing Yu, Nan-ying Ning, Ming Tian, Li-qun Zhang. Preparation of Thermally Reversible Silicone Rubber/Carbon Nanotubes Composite with High Electrical Conductivity Based on Diels-Alder Reaction. [J]. Acta Polymerica Sinica 50(5):485-495(2019) DOI: 10.11777/j.issn1000-3304.2019.18280.
Preparation of Thermally Reversible Silicone Rubber/Carbon Nanotubes Composite with High Electrical Conductivity Based on Diels-Alder Reaction
An emerging and crucial type of high-value-added functional materials
conductive elastomer composites (CEC) have found extensive applications in the fields of military and civil electromagnetic shielding/protection by virtue of their excellent electromagnetic shielding function and environmental sealing performance. However
practical uses of CEC materials can be largely compromised by such disadvantages as difficult rubber recovery
poor interfacial adhesion
and costly conductive fillers. In this study
methyl vinyl silicone rubber (SiR) with high vinyl content (20%
30% and 50%) was firstly synthesized through an anionic ring-opening reaction
and as-prepared SiR was grafted with furan functional groups
via
the thiol-ene click chemical reaction to afford furan-grafted SiR (SiR-Fu). SiR-Fu/CNTs composites were then prepared by solution blending of SiR-Fu and carbon nanotubes (CNTs)
during which Diels-Alder reaction occurred with SiR-Fu as the diene and CNTs as the dienophiles
giving rise to reversible covalent cross-linking networks throughout the resulting composites. SEM images showed that diameters of most CNTs in SiR-Fu/5wt% CNTs and SiR-Fu/10wt% CNTs composites were significantly larger than those of the raw CNTs due to a SiR layer coated on the nanotube surface
indication of the DA reaction between CNTs and SiR-Fu. However
CNTs tended to agglomerate when being further increased to 20 wt% and some of them showed little change in diameter as compared with the initial values
so that no DA reaction took place in that case. In addition
the gel content of SiR-Fu/5wt% CNTs and SiR-Fu/10wt% CNTs composites was 73% and 90%
respectively
suggesting an enhanced degree of DA reaction at increasing CNTs content within a certain range
while it decreased to 24.5% at 20 wt% CNTs addition for the reduced degree of DA reaction caused by CNTs agglomeration. Therefore
composites with 5 wt% and 10 wt% CNTs showed better interfacial adhesion
higher mechanical strength
greater electrical conductivity
and favorable thermal reversibility. Particularly
the electrical conductivity and tensile strength of SiR-Fu/10wt% CNTs composite reached 0.9 S/cm and 2.3 MPa
respectively
much improved than those of the neat SiR (2.5 × 10
−14
S/cm and 0.2 MPa). Moreover
the initial tensile strength
elongation at break
and electrical conductivity could be retained at 77%
Stoyanov H, Kollosche M, Risse S, Wache R, Kofod G . Adv Mater , 2013 . 25 ( 4 ): 578 - 583 . DOI:10.1002/adma.201202728http://doi.org/10.1002/adma.201202728 .
Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I . Adv Mater , 2014 . 26 ( 21 ): 3451 - 3458 . DOI:10.1002/adma.v26.21http://doi.org/10.1002/adma.v26.21 .
Polgar L M, van Duin M, Broekhuis A A, Picchioni F . Macromolecules , 2015 . 48 ( 19 ): 7096 - 7105 . DOI:10.1021/acs.macromol.5b01422http://doi.org/10.1021/acs.macromol.5b01422 .
Polgar L, Hagting E, Koek W J, Picchioni F, van Duin M . Polymers , 2017 . 9 ( 3 ): 81 .
Zhang H, Cai C, Liu W, Li D D, Zhang J W, Zhao N, Xu J . Sci Rep , 2017 . 7 ( 1 ): 11833 DOI:10.1038/s41598-017-11485-6http://doi.org/10.1038/s41598-017-11485-6 .
Zhang B L, Zhang P, Zhang H Z, Y an, Casey Y, Zheng Z J, Wu B, Yu, Y . Macromol Rapid Commun , 2017 . 38 ( 15 ): 1700110 DOI:10.1002/marc.v38.15http://doi.org/10.1002/marc.v38.15 .
Amamoto Y, Kikuchi M, Masunaga H, Sasaki S, Otsuka H, Takahara A . Macromolecules , 2010 . 43 ( 4 ): 1785 - 1791 . DOI:10.1021/ma902413fhttp://doi.org/10.1021/ma902413f .
Diels O, Alder K . Justus Liebigs Ann Chem , 1928 . 460 ( 1 ): 98 - 122 . DOI:10.1002/(ISSN)1099-0690http://doi.org/10.1002/(ISSN)1099-0690 .
Polgar M L, Hagting E, Raffa P, Mauri M, Simonutti R, Picchioni F, Duin M . Macromolecules , 2017 . 50 ( 22 ): 8955 - 8964 . DOI:10.1021/acs.macromol.7b01541http://doi.org/10.1021/acs.macromol.7b01541 .
Trovatti E, Lacerda T M, Carvalho A J, Gandini A . Adv Mater , 2015 . 27 ( 13 ): 2242 - 2245 . DOI:10.1002/adma.201405801http://doi.org/10.1002/adma.201405801 .
Zhao J, Xu R, Luo G X, Wu J, Xia H S . J Mater Chem B , 2016 . 4 ( 5 ): 982 - 989 . DOI:10.1039/C5TB02036Khttp://doi.org/10.1039/C5TB02036K .
Roy S, Das T, Zhang L, Li Y, Ming Y, Ting S, Hu X, Yue C Y . Polymer , 2015 . 58 153 - 161 . DOI:10.1016/j.polymer.2014.12.032http://doi.org/10.1016/j.polymer.2014.12.032 .
Xue S M, Xu Z L, Tang Y J, Ji C H . ACS Appl Mater Interfaces , 2016 . 8 ( 29 ): 19135 - 44 . DOI:10.1021/acsami.6b05545http://doi.org/10.1021/acsami.6b05545 .
Dumitru A, Mamlouk M, Scott K . Electrochi Acta , 2014 . 135 428 - 438 . DOI:10.1016/j.electacta.2014.04.123http://doi.org/10.1016/j.electacta.2014.04.123 .
Miller S G, Williams T S, Baker J S, Sola F, Lebron-Colon M, McCorkle L S, Wilmoth N G, Gaier J, Chen M, Meador M A . ACS Appl Mater Interfaces , 2014 . 6 ( 9 ): 6120 - 6126 . DOI:10.1021/am4058277http://doi.org/10.1021/am4058277 .
Araya-Hermosilla R, Pucci A, Raffa P, Santosa D, Pescarmona P P, Gengler N Y R, Rudolf P, Moreno-Villoslada I, Picchioni F . Polymers , 2018 . 10 ( 10 ): 1076 DOI:10.3390/polym10101076http://doi.org/10.3390/polym10101076 .
Li Y, Osuna S, Garcia-Borras M, Qi X, Liu S, Houk K N, Lan Y . Chem Eur J , 2016 . 22 ( 36 ): 12819 - 24 . DOI:10.1002/chem.v22.36http://doi.org/10.1002/chem.v22.36 .
Mata D, Amaral M, Fernandes A J, Colaco B, Gama A, Paiva M C, Gomes P S, Silva R F, Fernandes M H . Nanoscale , 2015 . 7 ( 20 ): 9238 - 9251 . DOI:10.1039/C5NR01829Chttp://doi.org/10.1039/C5NR01829C .
Willocq B, Lemaur V, Garah E M, Ciesielski A, Samori P, Raquez J M, Dubois P, Cornil J . Chem Commun , 2016 . 52 ( 48 ): 7608 - 7611 . DOI:10.1039/C6CC01427Ehttp://doi.org/10.1039/C6CC01427E .
Willocq B, Bose R K, Khelifa F, Garcia S J, Dubois P, Raquez J M . J Mater Chem A , 2016 . 4 ( 11 ): 4089 - 4097 . DOI:10.1039/C5TA09793Bhttp://doi.org/10.1039/C5TA09793B .
Zhang W, Zhou Z, Li Q, Chen G X . Ind Eng Chem Res , 2014 . 53 ( 16 ): 6699 - 6707 . DOI:10.1021/ie404204ghttp://doi.org/10.1021/ie404204g .
Lowe A B . Polym Chem , 2010 . 1 ( 1 ): 17 - 36 . DOI:10.1039/B9PY00216Bhttp://doi.org/10.1039/B9PY00216B .
Schenzel A M, Klein C, Rist K, Moszner N, Barner-Kowollik C . Adv Sci , 2016 . 3 ( 3 ): 1500361 DOI:10.1002/advs.201500361http://doi.org/10.1002/advs.201500361 .
Inglis A J, Sinnwell S, Stenzel M H, Barner-Kowollik C . Angew Chem Int Ed , 2009 . 48 ( 13 ): 2411 - 2414 . DOI:10.1002/anie.200805993http://doi.org/10.1002/anie.200805993 .
Gacal B, Durmaz H, Tasdelen M A, Hizal G, Tunca U, Yagci Y, Demirel A L . Macromolecules , 2006 . 39 ( 16 ): 5330 - 5336 . DOI:10.1021/ma060690chttp://doi.org/10.1021/ma060690c .
Xiong X Q, Chen Y M . Eur Polym J , 2012 . 48 ( 3 ): 569 - 579 . DOI:10.1016/j.eurpolymj.2011.12.010http://doi.org/10.1016/j.eurpolymj.2011.12.010 .
Xiong X Q, Xu Y H . Polym Bull , 2010 . 65 ( 5 ): 455 - 463 . DOI:10.1007/s00289-009-0221-1http://doi.org/10.1007/s00289-009-0221-1 .
Durmaz H, Colakoglu B, Tunca U, Gurkan H . J Polym Sci, Part A: Polym Chem , 2006 . 44 ( 5 ): 1667 - 1675 . DOI:10.1002/pola.21275http://doi.org/10.1002/pola.21275 .
Yusuke I, Hideaki I, Kensuke N, Yoshiki C . Macromolecules , 2000 . 33 ( 12 ): 4343 - 4346 . DOI:10.1021/ma991899bhttp://doi.org/10.1021/ma991899b .
Chen X, Dam M A, Ono K, Ajit M, Hongbin S, Steven R N, Kevin S, Fred W . Science , 2002 . 295 ( 5560 ): 1698 - 1702 . DOI:10.1126/science.1065879http://doi.org/10.1126/science.1065879 .
Chen X X, Fred W, Ajit K M, Shen H B, Steven R N . Macromolecules , 2003 . 36 ( 6 ): 1082 - 1807.
Michael L S, Dominic V M, David R W, Thomas Z, James R M . Macromolecules , 2007 . 40 ( 4 ): 818 - 823 . DOI:10.1021/ma062093whttp://doi.org/10.1021/ma062093w .