Boronic acid can form dynamic covalent boronic ester bonds with 1
2-diol or 1
3-diol moieties. This property has been used to prepare malleable and self-healing covalent polymer networks as well as glucose-responsive hydrogels. It remains a challenge to fabricate strong hydrogels with fast glucose-responsivity. Glucose-responsive dynamic covalent hydrogels were prepared by crosslinking poly(vinyl alcohol) (PVA) containing triblock copolymer and poly(ethylene oxide) (PEO) containing phenylboric acid. Specifically
we synthesized a new type of
α
ω
-phenylboronic acid substituted PEO crosslinker. The feature of the crosslinker is that amino-groups are introduced to the neighboring position of boronic acid
which will accelerate the boronic ester exchange. The gelation of this crosslinker with three PVA-
b
-PEO-
b
-PVA triblock copolymers at physiological pH was examined. Time-dependent dynamic storage and loss modulus of the hydrogels were monitored by rheological measurements. Formation of hydrogels turned out be very fast after mixing the crosslinker and triblock copolymer solutions. Stable dynamic covalent hydrogels were obtained after incubating the hydrogels for 12 h. The copolymer composition
PVA chain length
and content of crosslinker were found to greatly affect the hydrogel properties. Higher polymer concentration
longer PVA chains
and more PEO crosslinker endowed hydrogels with higher modulus. Gels with high yield stress were obtained by utilizing block copolymer with longer PVA segments or adding more crosslinker. Both pH and temperature affected the hydrogel properties. The formed hydrogels displayed higher modulus at pH = 7.4 than those at pH = 6.0
and the stability of the hydrogel could still be maintained at 37 °C. In addition
the hydrogels exhibited good structural recovery ability due to the covalent dynamic crosslinking. Finally
the hydrogels could load FITC-BSA
and the release profile of FITC-BSA was accelerated in the presence of glucose.
Xue K, Liow S S, Karim A A, Li Z B, Loh X J . Chem Rec , 2018 . 18 1517 - 1529 . DOI:10.1002/tcr.v18.10http://doi.org/10.1002/tcr.v18.10 .
Ferreira N N, Ferreira L M B, Cardoso V M O, Boni F I, Souza A L R, Gremiao M P D . Eur Polym J , 2018 . 99 117 - 133 . DOI:10.1016/j.eurpolymj.2017.12.004http://doi.org/10.1016/j.eurpolymj.2017.12.004 .
Li J Y, Mooney D J . Nat Rev Mater , 2016 . 1 16701 .
Amaral A J R, Pasparakis G . Polym Chem , 2017 . 8 6464 - 6484 . DOI:10.1039/C7PY01386Hhttp://doi.org/10.1039/C7PY01386H .
Wang H Y, Heilshorn S C . Adv Mater , 2015 . 27 3717 - 3736 . DOI:10.1002/adma.v27.25http://doi.org/10.1002/adma.v27.25 .
Brooks W L A, Sumerlin B S . Chem Rev , 2016 . 116 1375 - 1397 . DOI:10.1021/acs.chemrev.5b00300http://doi.org/10.1021/acs.chemrev.5b00300 .
Elshaarani T, Yu H J, Wang L, Zain A, Ullah R S, Haroon M, Khan R U, Fahad S, Khan A, Nazir A, Usman M, Naveed K U R . J Mater Chem B , 2018 . 6 3831 - 3854 . DOI:10.1039/C7TB03332Jhttp://doi.org/10.1039/C7TB03332J .
Yesilyurt V, Webber M J, Appel E A, Godwin C, Langer R, Anderson D G . Adv Mater , 2016 . 28 86 - 91 . DOI:10.1002/adma.201502902http://doi.org/10.1002/adma.201502902 .
Guo R W, Su Q, Zhang J W, Dong A J, Lin C G, Zhang J H . Biomacromolecules , 2017 . 18 1356 - 1364 . DOI:10.1021/acs.biomac.7b00089http://doi.org/10.1021/acs.biomac.7b00089 .
Bao C Y, Jiang Y J, Zhang HY, Lu X Y, Sun J Q . Adv Funct Mater , 2018 . 28 1800560 DOI:10.1002/adfm.v28.23http://doi.org/10.1002/adfm.v28.23 .
Zhang M, Song C C, Du F S, Li Z C . ACS Appl Mater Interfaces , 2017 . 9 25905 - 25914.
Tang S C, Ma H, Tu H C, Wang H R, Lin P C, Anseth K S . Adv Sci , 2018 . 5 1800638 DOI:10.1002/advs.201800638http://doi.org/10.1002/advs.201800638 .
Huang Z J, Delparastan P, Burch P, Cheng J, Cao Y, Messersmith P B . Biomater Sci , 2018 . 6 2487 - 2495 . DOI:10.1039/C8BM00453Fhttp://doi.org/10.1039/C8BM00453F .
Mukherjee S, Hill M R, Sumerlin B S . Soft Matter , 2015 . 11 6152 - 6161 . DOI:10.1039/C5SM00865Dhttp://doi.org/10.1039/C5SM00865D .
Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai, Y . J Am Chem Soc , 1998 . 120 12694 - 12695 . DOI:10.1021/ja982975dhttp://doi.org/10.1021/ja982975d .
Zhang Y, Guan Y, Zhou S . Biomacromolecules , 2007 . 8 3842 - 3847 . DOI:10.1021/bm700802phttp://doi.org/10.1021/bm700802p .
Lapeyre V, Gosse I, Chevreux S, Ravaine V . Biomacromolecules , 2006 . 7 3356 - 3363 . DOI:10.1021/bm060588nhttp://doi.org/10.1021/bm060588n .
Brooks W L A, Deng C C, Sumerlin B S . ACS Omega , 2018 . 3 17863 - 17870 . DOI:10.1021/acsomega.8b02999http://doi.org/10.1021/acsomega.8b02999 .
Carretti E, Grassi S, Cossalter M, Natali I, Caminati G, Weiss R G, Baglioni P, Dei L G . Langmuir , 2009 . 25 8656 - 8662 . DOI:10.1021/la804306whttp://doi.org/10.1021/la804306w .
Robb I, Smeulders J T . Polymer , 1997 . 38 2165 - 2169 . DOI:10.1016/S0032-3861(96)00755-0http://doi.org/10.1016/S0032-3861(96)00755-0 .
Hisamitsu I, Kataoka K, Okano T, Sakurai Y . Pharm Res , 1997 . 14 289 - 293 . DOI:10.1023/A:1012033718302http://doi.org/10.1023/A:1012033718302 .
Ivanov A E, Larsson H, Galaev I Y, Mattiasson B . Polymer , 2004 . 45 2495 - 2505 . DOI:10.1016/j.polymer.2004.02.022http://doi.org/10.1016/j.polymer.2004.02.022 .
Duncan T T, Weiss R G . Colloid Polym Sci , 2018 . 296 1047 - 1056 . DOI:10.1007/s00396-018-4326-7http://doi.org/10.1007/s00396-018-4326-7 .
Nurpeissova Z A, Alimkhanova S G, Mangazbayeva R A, Shaikhutdinov Y M, Mun G A, Khutoryanskiy V V . Eur Polym J , 2015 . 69 132 - 139 . DOI:10.1016/j.eurpolymj.2015.06.003http://doi.org/10.1016/j.eurpolymj.2015.06.003 .
Peters G M, Chi X D, Brockman C, Sessler J L . Chem Commun , 2018 . 54 5407 - 5409 . DOI:10.1039/C8CC02610Fhttp://doi.org/10.1039/C8CC02610F .
Lee J, Ko J H, Mansfield K M, Nauka P C, Bat E, Maynard H D . Macromol Biosci , 2018 . 18 1700372 DOI:10.1002/mabi.v18.5http://doi.org/10.1002/mabi.v18.5 .
Yang T, Ji R, Deng X X, Du F S, Li Z C . Soft Matter , 2014 . 10 2671 - 2678 . DOI:10.1039/c3sm53059khttp://doi.org/10.1039/c3sm53059k .
Yang Ting(杨挺), Deng Xinxing(邓鑫星), Du Fusheng(杜福胜), Li Zichen(李子臣) . 高分子学报 , Acta Polymerica Sinica , 2014 . 1553 - 1560.
Tong Y Y, Dong Y Q, Du F S, Li Z C . J Polym Sci, Part A: Polym Chem , 2009 . 47 1901 - 1910 . DOI:10.1002/pola.23288http://doi.org/10.1002/pola.23288 .
Li J, Loh S . Adv Drug Delivery Rev , 2008 . 60 1000 - 1017 . DOI:10.1016/j.addr.2008.02.011http://doi.org/10.1016/j.addr.2008.02.011 .
Liu F Y, Li F Y, Deng G H, Chen Y M, Zhang B Q, Zhang J, Liu C Y . Macromolecules , 2010 . 45 1636 - 1645.
Roberts M C, Hanson M C, Massey A P, Karren E A, Kiser P F . Adv Mater , 2007 . 19 2503 - 2507 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Glucose-responsive Hydrogels Based on ABA Triblock Copolymers Containing Phenylboronic Acid
PREPARATION AND CHARACTERIZATION OF BACTERIAL CELLULOSE REINFORCED PVA/PVP HYDROGELS
Construction of Poly(lipoic acid)-based Functional Hydrogels for Infected Skin Wound Healing
Controllable Fabrication of Bentonite-based Hydrogel Adhesive for High-durability Conservation of Sandstone-based Cultural Heritage
Preparation and Electrochemical Performance of Polyzwitterion Containing Intramolecular Salt as Solid Electrolytes for Lithium-ion Batteries
Related Author
No data
Related Institution
Beijing National Laboratory for Molecular Sciences,Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,College of Chemistry and Molecular Engineering,Peking University
Department of Material Science and engineering, Jinan University
School of Chemistry, Xi'an Jiaotong University
University of Science and Technology of China
CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences