and atomic force microscopy (AFM). The results indicate a critical concentration of ~ 5 mg/mL
at which the interchain interaction and chain aggregation state vary pronouncedly. In the dilute solution (
<
5 mg/mL)
P3HT chains maintain as independent random coils with negligible interchain interactions despite of regional segmental aggregate formation within the coils as revealed by PL and SAXS measurements. With the solution concentration exceeding the critical value of 5 mg/mL
the chain collapse takes place and the radius of gyration of the molecular chains decreases due to the strengthened
π
-
π
couplings among coils. The higher concentration of the solution leads to higher interchain entanglement and more local formation of rod-like segmental aggregates. The amount of the local segment aggregation is found to positively correlated with the concentration
while the radius of gyration and chain conformation exhibit nearly no variation any more at the concentrated solutions. SAXS data display a decreased power law of the concentrated solutions with respect to the dilute solutions
suggesting a lower dimension of the form factor and an improved interchain aggregation in the concentrated solution. This is in good agreement with the UV absorption and PL results. This concentration dependence of the regional chain disorder-order transition in P3HT/toluene solution is further verified to exert great influence on the final crystalline morphologies of the spin-casted films. The segmental aggregated orderings in solution can be effectively transferred to the thin films through namely the " memory effect” during the solution processing
resulting in nanowire structures and higher crystallinity of the films for the higher concentration solution.
关键词
共轭高分子组分浓度聚集状态链构象回转半径
Keywords
Conjugated polymerComponent concentrationAggregation stateChain conformationRadius of gyration
references
Liu X C, Nian L, Gao K, Zhang L J, Qing L C, Wang Z, Ying L, Xie Z Q, Ma Y G, Cao Y, Liu F, Chen J W. J Mater Chem A , 2017 . 5 ( 33 ): 17619 - 17631 . DOI:10.1039/C7TA05583Hhttp://doi.org/10.1039/C7TA05583H .
Lu G H, Li L G, Yang X N. Adv Mater , 2007 . 19 ( 21 ): 3594 - 3598 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Marrocchi A, Lanari D, Facchetti A, Vaccaro L. Energy Environ Sci , 2012 . 5 ( 9 ): 8457 - 8474 . DOI:10.1039/c2ee22129bhttp://doi.org/10.1039/c2ee22129b .
Wang Y, Cui H N, Zhu M J, Qiu F, Peng J, Lin Z Q. Macromolecules , 2017 . 50 ( 24 ): 9674 - 9682 . DOI:10.1021/acs.macromol.7b02126http://doi.org/10.1021/acs.macromol.7b02126 .
Zhu M J, Kim H, Jang Y J, Park S, Ryu D Y, Kim K, Tang P, Qiu F, Kim D H, Peng J. J Mater Chem A , 2016 . 4 ( 47 ): 18432 - 18443 . DOI:10.1039/C6TA08181Ahttp://doi.org/10.1039/C6TA08181A .
Shi Y, Liu J, Yang Y. J Appl Phys , 2000 . 87 ( 9 ): 4254 - 4263 . DOI:10.1063/1.373062http://doi.org/10.1063/1.373062 .
Lu L, Zheng T, Wu Q, Schneider A M, Zhao D, Yu L. Chem Rev , 2015 . 115 ( 23 ): 12666 - 12731 . DOI:10.1021/acs.chemrev.5b00098http://doi.org/10.1021/acs.chemrev.5b00098 .
Jung B, Kim K, Eom Y, Kim W. ACS Appl Mater Interfaces , 2015 . 7 ( 24 ): 13342 - 13349 . DOI:10.1021/acsami.5b01658http://doi.org/10.1021/acsami.5b01658 .
Peet J, Soci C, Coffin R C, Nguyen T Q, Mikhailovsky A, Moses D, Bazan G C. Appl Phys Lett , 2006 . 89 ( 25 ): 252105 DOI:10.1063/1.2408661http://doi.org/10.1063/1.2408661 .
Shahar C, Dutta S, Weissman H, Shimon L J, Ott H, Rybtchinski B. Angew Chem , 2016 . 128 ( 1 ): 187 - 190 . DOI:10.1002/ange.201507659http://doi.org/10.1002/ange.201507659 .
Erdemir D, Lee A Y, Myerson A S. Acc Chem Res , 2009 . 42 ( 5 ): 621 - 629 . DOI:10.1021/ar800217xhttp://doi.org/10.1021/ar800217x .
Gebauer D, Kellermeier M, Gale J D, Bergström L, Cölfen H. Chem Soc Rev , 2014 . 43 ( 7 ): 2348 - 2371 . DOI:10.1039/C3CS60451Ahttp://doi.org/10.1039/C3CS60451A .
Panzer F, Bässler H, Köhler A. J Phys Chem Lett , 2016 . 8 ( 1 ): 114 - 125.
Reichenberger M, Kroh D, Matrone G M, Schötz K, Pröller S, Filonik O, Thordardottir M E, Herzig E M, Bässler H, Stingelin N, köhler A. J Polym Sci, Part B: Polym Phys , 2018 . 56 ( 6 ): 532 - 542 . DOI:10.1002/polb.24562http://doi.org/10.1002/polb.24562 .
Schwartz B J. Annu Rev Phys Chem , 2003 . 54 141 - 172 . DOI:10.1146/annurev.physchem.54.011002.103811http://doi.org/10.1146/annurev.physchem.54.011002.103811 .
Mukherji D, Wagner M, Watson M D, Winzen S, de Oliveira T E, Marques C M, Kremer K. Soft Matter , 2017 . 13 ( 12 ): 2292 - 2294 . DOI:10.1039/C7SM00041Chttp://doi.org/10.1039/C7SM00041C .
Zhao Y, Yuan G X, Roche P, Leclerc M. Polymer , 1995 . 36 ( 11 ): 2211 - 2214 . DOI:10.1016/0032-3861(95)95298-Fhttp://doi.org/10.1016/0032-3861(95)95298-F .
Zhou K, Liu J G, Li M G, Yu X H, Xing R B, Han Y C. J Phys Chem C , 2015 . 119 ( 4 ): 1729 - 1736 . DOI:10.1021/jp511370xhttp://doi.org/10.1021/jp511370x .
Peng Y, He Z Q, Li H, Liang C J. Polymer , 2016 . 98 ( 1 ): 61 - 69.
Cheng P, Yan C, Li Y, Ma W, Zhan X, Science E. Energy Environ Sci , 2015 . 8 ( 8 ): 2357 - 2364 . DOI:10.1039/C5EE01838Bhttp://doi.org/10.1039/C5EE01838B .
Nguyen T Q, Doan V, Schwartz B J. J Chem Phys , 1999 . 110 ( 8 ): 4068 - 4078 . DOI:10.1063/1.478288http://doi.org/10.1063/1.478288 .
Grell M, Bradley D, Long X, Chamberlain T, Inbasekaran M, Woo E, Soliman M. Acta Polym , 1998 . 49 ( 8 ): 439 - 444 . DOI:10.1002/(ISSN)1521-4044http://doi.org/10.1002/(ISSN)1521-4044 .
Greenham N C, Peng X, Alivisatos A P. Phys Rev B , 1996 . 54 ( 24 ): 17628 DOI:10.1103/PhysRevB.54.17628http://doi.org/10.1103/PhysRevB.54.17628 .
Wang J, Wang D, Miller E K, Moses D, Bazan G C, Heeger A J. Macromolecules , 2000 . 33 ( 14 ): 5153 - 5158 . DOI:10.1021/ma000081jhttp://doi.org/10.1021/ma000081j .
Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y S, Wei J. Adv Funct Mater , 2009 . 19 ( 6 ): 894 - 904 . DOI:10.1002/adfm.v19:6http://doi.org/10.1002/adfm.v19:6 .
Clark J, Silva C, Friend R H, Spano F C. Phys Rev Lett , 2007 . 98 ( 20 ): 206406 DOI:10.1103/PhysRevLett.98.206406http://doi.org/10.1103/PhysRevLett.98.206406 .
Kuei B, Gomez E D. Soft Matter , 2017 . 13 ( 1 ): 49 - 67 . DOI:10.1039/C6SM00979Dhttp://doi.org/10.1039/C6SM00979D .
Bauer B J, Hobbie E K, Becker M L J M. Macromolecules , 2006 . 39 ( 7 ): 2637 - 2642 . DOI:10.1021/ma0527303http://doi.org/10.1021/ma0527303 .
Li Y C, Chen K B, Chen H L, Hsu C S, Tsao C S, Chen J H, Chen S A. Langmuir , 2006 . 22 ( 26 ): 11009 - 11015 . DOI:10.1021/la0612769http://doi.org/10.1021/la0612769 .
Laser Light Scattering and Its Applications in Polymer Characterization
Multi-level Self-assembly of Conjugated Polymers
Radius of Gyration of Comb-shaped Copolymers by the Wormlike Chain Model:Theory and Its Applications to MPEG-type Polycarboxylate-type Superplasticizers
Modelling the Equilibrium Sizes of Comb-shaped MPEG-type Polycarboxylate-type Superplasticizers in Dilute Solution and Their Apparent Molecular Weight in Conventional Size Exclusion Chromatography
SYNTHESIS OF HIGH MOLECULAR WEIGHT POLY(CARBAZOLE)S VIA CLICK POLYMERIZATION
Related Author
No data
Related Institution
SINOPEC Beijing Research Institute of Chemical Industry
College of Chemistry & Molecular Engineering, Peking University
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistryand Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering,Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University
Department of Materials Science and Engineering, College of Engineering, Peking University
State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd.