浏览全部资源
扫码关注微信
1.伊犁师范学院物理科学与技术学院 新疆凝聚态相变与微结构实验室 伊宁 835000
2.南京大学化学化工学院 配位化学国家重点实验室 南京 210023
Published:2019-8,
Published Online:18 April 2019,
Received:29 January 2019,
Revised:2 March 2019,
扫 描 看 全 文
Xiao-xia Wang, Lin-ling Li, Lai Wei, Qi Xue, Dong-shan Zhou. Crystallization of Poly(L-lactide) Oligomer Confined in Alumina Nanopores. [J]. Acta Polymerica Sinica 50(8):841-849(2019)
Xiao-xia Wang, Lin-ling Li, Lai Wei, Qi Xue, Dong-shan Zhou. Crystallization of Poly(L-lactide) Oligomer Confined in Alumina Nanopores. [J]. Acta Polymerica Sinica 50(8):841-849(2019) DOI: 10.11777/j.issn1000-3304.2019.19024.
借助量热学方法研究了低分子量聚乳酸(PLLA)受限于阳极氧化铝(AAO)模板中的玻璃化转变、结晶和熔融行为. 实验结果表明,相比于本体状态,PLLA受限于AAO纳米孔道中的降温结晶行为受到明显的抑制,结晶焓随着孔道孔径的减小而逐渐降低. 大孔径AAO孔道中PLLA纳米棒与本体相近的结晶温度表明其成核过程仍为异相成核所主导. 与此同时,非等温结晶动力学实验结果显示纳米孔道中PLLA成核速率的温度依赖性弱于本体状态. 当AAO孔径小于28 nm时,PLLA纳米棒则观测不到降温结晶峰的存在. PLLA纳米棒的玻璃态呈现出双重玻璃化转变温度(
T
g
)的行为,较高的
T
g
对应于邻近孔壁界面吸附层内的高分子链,较低的
T
g
归属于孔道中心的高分子链,两者表现出截然相反的孔径依赖性. 在升温过程中,PLLA纳米棒存在显著的冷结晶行为,其结晶发生在较高的温度下且冷结晶峰较宽. 这一现象可归咎于PLLA在纳米孔道内成核速率的改变,成核活性和分布的不均匀性,以及孔道内分子链运动性的差异性. 由于界面吸附层的存在,PLLA从玻璃态升温过程中的表面诱导成核受到抑制. 结合非等温结晶动力学实验结果,发现界面吸附层和孔道中心的PLLA的冷结晶过程彼此相互独立,后者在较高的温度下进行. 此外,随着AAO纳米孔道孔径的减小,界面效应逐渐变得显著,生成的PLLA晶体稳定性较差,熔融重结晶现象较明显,同时其结晶度和熔点逐渐降低.
The glass transition
crystallization
and melting behaviors of oligomer poly(L-lactide) (PLLA) confined in anodic aluminum oxide (AAO) nanopores were invesitgated by calorimetry. Compared with the bulk counterpart
PLLA located inside AAO nanopores showed frustrated crystallization during the cooling process
and the crystallization enthalpy gradually decreased with the reduction of pore size. In large nanopores
the crystallization peaks of PLLA nanorods were very close to that of bulk sample
which indicated the predomination of heterogeneous nucleation. Meanwhile
the nonisothermal crystallization results displayed that temperature dependence of nucleation rate of PLLA in nanopores was weaker than that in bulk state. As the diameter of nanopore was smaller than 28 nm
the crystallization peak disappeared. The glass state of PLLA nanorods exhibited double glass transition temperatures (
T
g
s)
the higher
T
g
attributed to chains in the interfacial adsorbed layer adjacent to pore walls
and the lower
T
g
belonged to chains in the pore center. The two
T
g
s showed opposite pore size dependences—the lower one decreased with the reduction of pore size
while the higher one increased. During the heating process
PLLA confined in nanopores showed the pronounced cold crystallization phenomenon
which took place at higher temperatures and the peak was much broader than that of bulk state
which could be ascribed to the supressed nucleation rate
the poor nucleation activity
and the broad nucleation dispersion in PLLA nanorods. Apart form the influence of nucleation
hetergeneous chain mobilities in nanopores also played an important role. Due to the existence of adsorbed layer
surface induced nucleation was hindered. Interestingly
by the nonisothermal crystallization experiments
PLLA chains in the interfacial layer and pore center displayed independent cold crystallization behaviors
and the latter happened at the higher temperatures. Finally
the interfacial effect gradually dominated as the pore size decreased. PLLA crystals formed in small nanopores became unstable
obvious melting-recrystallization phenomena occurred
and the crystallinity and melting temperature of PLLA crystals were lower in smaller nanopores.
聚乳酸高分子结晶阳极氧化铝模板纳米受限态
Poly(L-lactide)Polymer crystallizationAnodic aluminum oxide templateNano-confinement
Keddie J L, Jones R A L, Cory R A. Faraday Discuss , 1994 . 98 219 - 230 . DOI:10.1039/fd9949800219http://doi.org/10.1039/fd9949800219 .
Chai Y, Salez T, McGraw J D, Benzaquen M, Dalnoki-Veress K, Raphael E, Forrest J A. Science , 2014 . 343 ( 6174 ): 994 - 999 . DOI:10.1126/science.1244845http://doi.org/10.1126/science.1244845 .
Fakhraai Z, Forrest J A. Science , 2008 . 319 ( 5863 ): 600 - 604 . DOI:10.1126/science.1151205http://doi.org/10.1126/science.1151205 .
O'Connell P A, McKenna G B. Science , 2005 . 307 ( 5716 ): 1760 - 1763 . DOI:10.1126/science.1105658http://doi.org/10.1126/science.1105658 .
Yang Z H, Fujii Y, Lee F K, Lam C H, Tsui O K C. Science , 2010 . 328 ( 5986 ): 1676 - 1679 . DOI:10.1126/science.1184394http://doi.org/10.1126/science.1184394 .
Jones R L, Kumar S K, Ho D L, Briber R M, Russell T P. Nature , 1999 . 400 ( 6740 ): 146 - 149 . DOI:10.1038/22080http://doi.org/10.1038/22080 .
Rowland H D, King W P, Pethica J B, Cross G L W. Science , 2008 . 322 ( 5902 ): 720 - 724 . DOI:10.1126/science.1157945http://doi.org/10.1126/science.1157945 .
Priestley R D, Ellison C J, Broadbelt L J, Torkelson J M. Science , 2005 . 309 ( 5733 ): 456 - 459 . DOI:10.1126/science.1112217http://doi.org/10.1126/science.1112217 .
Yang Rong(杨榕), Li Hongmei(李红梅), Jiang Jing(姜菁), Zhou Dongshan(周东山). Acta Polymerica Sinica(高分子学报) , 2018 . ( 9 ): 1228 - 1235 . DOI:10.11777/j.issn1000-3304.2018.18024http://doi.org/10.11777/j.issn1000-3304.2018.18024 .
Mijangos C, Hernández R, Martín J. Prog Polym Sci , 2016 . 54-55 148 - 182 . DOI:10.1016/j.progpolymsci.2015.10.003http://doi.org/10.1016/j.progpolymsci.2015.10.003 .
Michell R M, Mueller A J. Prog Polym Sci , 2016 . 54-55 183 - 213 . DOI:10.1016/j.progpolymsci.2015.10.007http://doi.org/10.1016/j.progpolymsci.2015.10.007 .
Mary Michell R, Blaszczyk-Lezak I, Mijangos C, Mueller A J. J Polym Sci, Part B: Polym Phys , 2014 . 52 ( 18 ): 1179 - 1194 . DOI:10.1002/polb.23553http://doi.org/10.1002/polb.23553 .
Michell R M, Blaszczyk-Lezak I, Mijangos C, Mueller A J. Polymer , 2013 . 54 ( 16 ): 4059 - 4077 . DOI:10.1016/j.polymer.2013.05.029http://doi.org/10.1016/j.polymer.2013.05.029 .
Duran H, Steinhart M, Butt H J, Floudas G. Nano Lett , 2011 . 11 ( 4 ): 1671 - 1675 . DOI:10.1021/nl200153chttp://doi.org/10.1021/nl200153c .
Suzuki Y, Duran H, Steinhart M, Butt H J, Floudas G. Soft Matter , 2013 . 9 ( 9 ): 2621 - 2628 . DOI:10.1039/c2sm27618fhttp://doi.org/10.1039/c2sm27618f .
Suzuki Y, Duran H, Akram W, Steinhart M, Floudas G, Butt H J. Soft Matter , 2013 . 9 ( 38 ): 9189 - 9198 . DOI:10.1039/c3sm50907ahttp://doi.org/10.1039/c3sm50907a .
Shi G Y, Liu G M, Su C, Chen H M, Chen Y, Su Y L, Muller A J, Wang D J. Macromolecules , 2017 . 50 ( 22 ): 9015 - 9023 . DOI:10.1021/acs.macromol.7b02284http://doi.org/10.1021/acs.macromol.7b02284 .
Li L L, Liu J W, Qin L L, Zhang C, Sha Y, Jiang J, Wang X L, Chen W, Xue G, Zhou D S. Polymer , 2017 . 110 273 - 283 . DOI:10.1016/j.polymer.2016.12.081http://doi.org/10.1016/j.polymer.2016.12.081 .
Guan Y, Liu G M, Ding G Q, Yang T Y, Mueller A J, Wang D J. Macromolecules , 2015 . 48 ( 8 ): 2526 - 2533 . DOI:10.1021/acs.macromol.5b00108http://doi.org/10.1021/acs.macromol.5b00108 .
Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U, Hempel E, Thurn-Albrecht T. Phys Rev Lett , 2006 . 97 ( 2 ): 027801 DOI:10.1103/PhysRevLett.97.027801http://doi.org/10.1103/PhysRevLett.97.027801 .
Guan Y, Liu G M, Gao P Y, Li L, Ding G Q, Wang D J. ACS Macro Lett , 2013 . 2 ( 3 ): 181 - 184 . DOI:10.1021/mz300592vhttp://doi.org/10.1021/mz300592v .
Wu H, Wang W, Huang Y, Su Z H. Macromol Rapid Commun , 2009 . 30 ( 3 ): 194 - 198 . DOI:10.1002/marc.v30:3http://doi.org/10.1002/marc.v30:3 .
Wu Hui(吴慧), Wang Wei(王巍), Su Zhaohui(苏朝晖) . 2009 . ( 5 ): 425 - 429.
Su Cui(苏萃), Shi Guangyu(施光宇), Wang Dujin(王笃金), Liu Guoming(刘国明) . 2019 . 50 ( 3 ): 281 - 290.
Su C, Shi G Y, Li X L, Zhang X Q, Mueller A J, Wang D J, Liu G M. Macromolecules , 2018 . 51 ( 23 ): 9484 - 9493 . DOI:10.1021/acs.macromol.8b01801http://doi.org/10.1021/acs.macromol.8b01801 .
Yao Y, Sakai T, Steinhart M, Butt H J, Floudas G. Macromolecules , 2016 . 49 ( 16 ): 5945 - 5954 . DOI:10.1021/acs.macromol.6b01406http://doi.org/10.1021/acs.macromol.6b01406 .
Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W. Macromolecules , 2007 . 40 ( 18 ): 6617 - 6623 . DOI:10.1021/ma070994ehttp://doi.org/10.1021/ma070994e .
Sun X L, Fang Q Q, Li H H, Ren Z J, Yang S K. Langmuir , 2016 . 32 ( 13 ): 3269 - 3275 . DOI:10.1021/acs.langmuir.6b00251http://doi.org/10.1021/acs.langmuir.6b00251 .
Mi C, Zhou J D, Ren Z J, Li H H, Sun X L, Yan S K. Polym Chem , 2016 . 7 ( 2 ): 410 - 417 . DOI:10.1039/C5PY01532Dhttp://doi.org/10.1039/C5PY01532D .
Li L L, Zhou D S, Huang D H, Xue G. Macromolecules , 2014 . 47 ( 1 ): 297 - 303 . DOI:10.1021/ma4020017http://doi.org/10.1021/ma4020017 .
Li L L, Chen J, Deng W J, Zhang C, Sha Y, Cheng Z, Xue G, Zhou D S. J Phys Chem B , 2015 . 119 ( 15 ): 5047 - 5054 . DOI:10.1021/jp511248qhttp://doi.org/10.1021/jp511248q .
Teng C, Li L L, Wang Y, Wang R, Chen W, Wang X L, Xue G. J Chem Phys , 2017 . 146 ( 20 ): 203319 DOI:10.1063/1.4978230http://doi.org/10.1063/1.4978230 .
Zhang C, Li L L, Wang X L, Xue G. Macromolecules , 2017 . 50 ( 4 ): 1599 - 1609 . DOI:10.1021/acs.macromol.6b02469http://doi.org/10.1021/acs.macromol.6b02469 .
Vanroy B, Wubbenhorst M, Napolitano S. ACS Macro Lett , 2013 . 2 ( 2 ): 168 - 172 . DOI:10.1021/mz300641xhttp://doi.org/10.1021/mz300641x .
0
Views
27
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution