Polymeric vesicles have important applications in biomedicine
nuclear magnetic imaging
nanoreactors
and catalyst fields. Amphiphiic block copolymer nanoparticles with different morphologies (such as vesicles and spheres)
sizes and surface chemical properties have been successfully prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA). Generally
it is difficult for researchers to obtain pure vesicles with different sizes. In this study
we report an efficient approach to produce block copolymers vesicles by PISA. A one-pot
facile method for the synthesis of nano-objects composed of amphiphilic poly(4-vinylpyridine)-
b
-poly(4-vinylpyridine-
r
-styrene) block copolymer
P4VP-
b
-P(4VP-
r
-St)
is introduced by P4VP trithiocarbonate macro-RAFT agent mediated dispersion copolymerization of 4VP and St in ethanol/water mixture. It is found that the morphology of P4VP-
b
-P(4VP-
r
-St) diblock copolymer nano-objects like spherical micelles
worms
and vesicles can be easily tuned either by changing the degree of polymerization of the random P(4VP-
r
-St) block
the amount of 4VP comonomer
solvent composition and the ratio of the degree of polymerization of PSt and P4VP segments. Among them
by adding a small amount of 4VP comonomer during the dispersion RAFT polymerization of St
the final morphology of the block copolymer can be greatly affected
pure vesicle can be formed and the size can be adjusted more effectively. Compared with the dispersion RAFT polymerization of St
the advantage of the dispersion RAFT copolymerization by utilizing residual solvophilic monomer to tune the block copolymer morphology is demonstrated. It is believed to be a novel
convenient and efficient protocol for the control of the morphology and size of the block copolymer nano-objects fabricated by PISA. The polymerization shows characteristic features of " living”/controlled radical polymerization and the experimental results are confirmed by gel permeation chromatography (GPC)
dynamic light scattering (DLS)
transmission electron microscopy (TEM) and
1
H-NMR. Due to diverse potential applications of polymer vesicles
the results of this study are of great importance for the theoretical design and application of PISA strategies.
关键词
聚合诱导自组装分散聚合可逆加成-断裂链转移聚合嵌段共聚物纳米粒子
Keywords
Polymerization-induced self-assemblyDispersion polymerizationReversible addition-fragmentation chain transfer polymerizationBlock copolymer nanoparticles
references
Warren N J, Armes S P. J Am Chem Soc , 2014 . 136 ( 29 ): 10174 - 10185 . DOI:10.1021/ja502843fhttp://doi.org/10.1021/ja502843f .
Canning S L, Smith G N, Armes S P. Macromolecules , 2016 . 49 ( 6 ): 1985 - 2001 . DOI:10.1021/acs.macromol.5b02602http://doi.org/10.1021/acs.macromol.5b02602 .
Cai W, Wan W, Hong C, Huang C, Pan C. Soft Matter , 2010 . 6 5554 - 5561 . DOI:10.1039/c0sm00284dhttp://doi.org/10.1039/c0sm00284d .
Kang H, Song Z, Shen X, Zhang S, Li J, Zhang W. Polymer , 2015 . 66 8 - 15 . DOI:10.1016/j.polymer.2015.04.009http://doi.org/10.1016/j.polymer.2015.04.009 .
Liu Z, Zhang G, Lu W, Huang Y, Zhang J, Chen T. Polym Chem , 2015 . 6 ( 34 ): 6129 - 6132 . DOI:10.1039/C5PY00907Chttp://doi.org/10.1039/C5PY00907C .
Zhou J, Zhang W, Hong C, Pan C. Polym Chem , 2016 . 7 ( 19 ): 3259 - 3267 . DOI:10.1039/C6PY00164Ehttp://doi.org/10.1039/C6PY00164E .
Ladmiral V, Charlot A, Semsarilar M, Armes S P. Polym Chem , 2015 . 6 ( 10 ): 1805 - 1816 . DOI:10.1039/C4PY01556Hhttp://doi.org/10.1039/C4PY01556H .
Zhang W, Hong C, Pan C. Macromolecules , 2014 . 47 ( 5 ): 1664 - 1671 . DOI:10.1021/ma402497yhttp://doi.org/10.1021/ma402497y .
He W, Sun X, Wan W, Pan C. Macromolecules , 2011 . 44 ( 9 ): 3358 - 3365 . DOI:10.1021/ma2000674http://doi.org/10.1021/ma2000674 .
Jones E R, Semsarilar M, Wyman P, Boerakker M, Armes S P. Polym Chem , 2016 . 7 ( 4 ): 851 - 859 . DOI:10.1039/C5PY01795Ehttp://doi.org/10.1039/C5PY01795E .
Zehm D, Ratcliffe L P D, Armes S P. Macromolecules , 2013 . 46 ( 1 ): 128 - 139 . DOI:10.1021/ma301459yhttp://doi.org/10.1021/ma301459y .
Wan W, Sun X, Pan C. Macromol Rapid Commun , 2010 . 31 ( 4 ): 399 - 404 . DOI:10.1002/marc.v31:4http://doi.org/10.1002/marc.v31:4 .
Song Z, He X, Gao C, Khan H, Shi P, Zhang W. Polym Chem , 2015 . 6 ( 36 ): 6563 - 6572 . DOI:10.1039/C5PY01065Ahttp://doi.org/10.1039/C5PY01065A .
Su Y, Xiao X, Li S, Dan M, Wang X, Zhang W. Polym Chem , 2014 . 5 ( 2 ): 578 - 587 . DOI:10.1039/C3PY00995Ehttp://doi.org/10.1039/C3PY00995E .
Qu Y, Wang S, Khan H, Gao C, Zhou H, Zhang W. Polym. Chem , 2016 . 7 ( 10 ): 1953 - 1962 . DOI:10.1039/C5PY01917Fhttp://doi.org/10.1039/C5PY01917F .
Shi P, Gao C, He X, Sun P, Zhang W. Macromolecules , 2015 . 48 ( 5 ): 1380 - 1389 . DOI:10.1021/acs.macromol.5b00021http://doi.org/10.1021/acs.macromol.5b00021 .
Liu H, Ding M, Ding Z, Gao C, Zhang W. Polym Chem , 2017 . 8 ( 20 ): 3203 - 3210 . DOI:10.1039/C7PY00473Ghttp://doi.org/10.1039/C7PY00473G .
Gao C, Wu J, Zhou H, Qu Y, Li B, Zhang W. Macromolecules , 2016 . 49 ( 12 ): 4490 - 4500 . DOI:10.1021/acs.macromol.6b00771http://doi.org/10.1021/acs.macromol.6b00771 .
Li Q, Gao C, Li S, Huo F, Zhang W. Polym Chem , 2014 . 5 ( 8 ): 2961 - 2972 . DOI:10.1039/C3PY01699Dhttp://doi.org/10.1039/C3PY01699D .
Huang C, Wang Y, Hong C, Pan C. Macromol Rapid Commun , 2011 . 32 ( 15 ): 1174 - 1179 . DOI:10.1002/marc.v32.15http://doi.org/10.1002/marc.v32.15 .
Shi P, Zhou H, Gao C, Zhang WQ, Wang S, Sun P, Zhang W. Polym Chem , 2015 . 6 ( 27 ): 4911 - 4920 . DOI:10.1039/C5PY00697Jhttp://doi.org/10.1039/C5PY00697J .
Figg C A, Carmean R N, Bentz K C, Mukherjee S, Savin A D, Sumerlin B S. Macromolecules , 2017 . 50 ( 3 ): 935 - 943 . DOI:10.1021/acs.macromol.6b02754http://doi.org/10.1021/acs.macromol.6b02754 .
Tan M, Shi Y, Fu Z, Yang W. Polym Chem , 2018 . 9 1082 - 1094 . DOI:10.1039/C7PY01905Jhttp://doi.org/10.1039/C7PY01905J .
Warren N J, Mykhaylyk O O, Mahmood D, Ryan A J, Armes S P. J Am Chem Soc , 2014 . 136 ( 3 ): 1023 - 1033 . DOI:10.1021/ja410593nhttp://doi.org/10.1021/ja410593n .
Turner Alfrey J R, Price C C. J Polym Sci, Part A: Polym Chem , 1996 . 34 ( 2 ): 101 - 106.
Kuchanov S I, Zharnikov T V. Eur Phys J E , 2002 . 7 183 - 202.
Canning S L, Cunningham V J, Ratcliffe L P D, Armes S P. Polym Chem , 2017 . 8 4811 - 4821 . DOI:10.1039/C7PY01161Jhttp://doi.org/10.1039/C7PY01161J .