A series of microcellular polypropylene (PP) electrical boxes were fabricated by microcellular injection molding with supercritical nitrogen (Sc-N
2
) as the physical foaming agent. The effects of higher injection speeds (250 and 290 mm/s) on the cellular structure
unfoamed skin layer thickness
and warpage of the microcellular boxes were quantitatively investigated. According to the simulated gapwise distributions of shear rate
temperature
viscosity
and pressure of PP melt/Sc-N
2
solution at the last moment of the filling stage in the molding of the PP boxes
the formation mechanisms of cellular structure and skin layer within the walls of the boxes were analyzed in detail. It was demonstrated that microcellular cells with smaller diameters (less than 90 μm) were developed at the core layer of the boxes. This is mainly because higher injection speeds led to higher pressure drop rate and shear rate
which thereby promoted bubble nucleation. It should be noted that tiny cell area with diameters less than 20 μm and more regular shape appeared near the skin layer of the boxes. This is due to the synthetic effects of higher shear stress combined with lower melt temperature. Along the filling direction
an exponential relationship was found between density and mean diameter of the cells within box sidewall
and the skin layer thickness increased in a nearly linear manner. The latter is mainly attributed to an almost linear decrease in the corresponding surface temperature. Warpages at the open end of the boxes were decreased through increasing the injection speed from 250 mm/s to 290 mm/s. The results demonstrate that more uniform and compact cellular structure as well as thinner unfoamed skin layer is beneficial to lowering the warpage of microcellular injection molded parts. This is worthy of further investigation in the future work.
Lee J J, Cha S W. Polym-Plast Technol Eng , 2006 . 45 ( 7 ): 871 - 877 . DOI:10.1080/03602550600611768http://doi.org/10.1080/03602550600611768 .
Rizvi S J A, Bhatnagar N. Int Polym Proc , 2009 . 24 ( 5 ): 399 - 405 . DOI:10.3139/217.2263http://doi.org/10.3139/217.2263 .
Rizvi S J A, Alaei M H, Yadav A, Bhatnagar N. J Cell Plast , 2014 . 50 ( 3 ): 199 - 219 . DOI:10.1177/0021955X14524081http://doi.org/10.1177/0021955X14524081 .
Huang H X, Wang J K. Polym Test , 2008 . 27 ( 4 ): 513 - 519 . DOI:10.1016/j.polymertesting.2008.02.009http://doi.org/10.1016/j.polymertesting.2008.02.009 .
Zhang L, Zhao G Q, Wang G L. Appl Therm Eng , 2017 . 114 484 - 497 . DOI:10.1016/j.applthermaleng.2016.11.180http://doi.org/10.1016/j.applthermaleng.2016.11.180 .
Dong G W, Zhao G Q, Guan Y J, Wang G L, Wang X X. J Appl Polym Sci , 2014 . 131 ( 12 ): 40365 .
Gómez-Gómez J F, Arencón D, Sánchez-Soto M A, Martínez A B. J Cell Plast , 2013 . 49 ( 1 ): 47 - 63 . DOI:10.1177/0021955X12460044http://doi.org/10.1177/0021955X12460044 .
Gómez-Gómez J F, Arencón D, Sánchez-Soto M A, Martínez A B. Adv Polym Technol , 2013 . 32 ( 1 ): E692 - E704.
Li J L, Chen Z L, Wang X Z, Liu T, Zhou Y F, Luo S K. J Appl Polym Sci , 2013 . 130 ( 6 ): 4171 - 4181 . DOI:10.1002/app.v130.6http://doi.org/10.1002/app.v130.6 .
Bledzki A K, Kirschling H, Rohleder M, Chate A. J Cell Plast , 2012 . 48 ( 4 ): 301 - 340 . DOI:10.1177/0021955X12441193http://doi.org/10.1177/0021955X12441193 .
Xi Z H, Sha X Y, Liu T, Zhao L. J Cell Plast , 2014 . 50 ( 5 ): 489 - 505 . DOI:10.1177/0021955X14528931http://doi.org/10.1177/0021955X14528931 .
Huang H X, Tian J D, Guan W S. Polym Eng Sci , 2014 . 54 ( 2 ): 327 - 335 . DOI:10.1002/pen.v54.2http://doi.org/10.1002/pen.v54.2 .
Lang Jianlin(郎建林), Wang Tao(王韬), Ge Yong(葛勇), Li Lei(厉蕾), Yan Yue(颜悦). Acta Polymerica Sinica(高分子学报) , 2017 . ( 6 ): 999 - 1007 . DOI:10.11777/j.issn1000-3304.2017.16282http://doi.org/10.11777/j.issn1000-3304.2017.16282 .
Hwang S S, Ke Z S. Int Commun Heat Mass Transf , 2008 . 35 ( 3 ): 263 - 275 . DOI:10.1016/j.icheatmasstransfer.2007.08.015http://doi.org/10.1016/j.icheatmasstransfer.2007.08.015 .
Hwang S S, Hsu P P, Chiang C W. Int Commun Heat Mass Transf , 2008 . 35 ( 6 ): 735 - 743 . DOI:10.1016/j.icheatmasstransfer.2008.02.011http://doi.org/10.1016/j.icheatmasstransfer.2008.02.011 .
Kramschuster A, Cavitt R, Ermer D, Chen Z B, Turng L S. Polym Eng Sci , 2005 . 45 ( 10 ): 1408 - 1418 . DOI:10.1002/(ISSN)1548-2634http://doi.org/10.1002/(ISSN)1548-2634 .
Kramschuster A, Cavitt R, Ermer D, Chen Z B, Turng L S. Plast Rubber Compos , 2006 . 35 ( 5 ): 198 - 209 . DOI:10.1179/174328906X128199http://doi.org/10.1179/174328906X128199 .
Shen C, Kramschuster A, Ermer D, Turng L S. Int Polym Process , 2006 . 21 ( 4 ): 393 - 401 . DOI:10.3139/217.0122http://doi.org/10.3139/217.0122 .
Yoon J D, Cha S W, Chong T H, Ha Y W. Polym-Plast Technol Eng , 2007 . 46 ( 9 ): 815 - 820 . DOI:10.1080/03602550701278046http://doi.org/10.1080/03602550701278046 .