Polyoxazolines have drawn much attention by researchers because of their hydrophilicity
good biocompatibility
non-toxicity. Chemical modification on polyoxazolines and their derivatives by grafting reaction with other synthetic polymer chains is one of the most important ways to improve the comprehensive properties of polyoxazoline materials. The novel amphiphilic polystyrene-
g
-poly(2-ethyl-2-oxazoline)
PS-
g
-PEOX
graft copolymers were prepared through the combination of " grafting from” method and cationic ring-opening polymerization of 2-ethyl-2-oxazoline using the polystyrene bearing chloromethyl functional groups as the macroinitiator in the presence of activator
such as potassium iodide (KI)
silver perchlorate (AgClO
4
) or silver trifluoromethanesulfonate (AgCF
3
SO
3
). The chemical structure and composition of PS-
g
-PEOX graft copolymers were confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (
1
H-NMR). The results show that the novel amphiphilic PS-
g
-PEOX graft copolymers with various PEOX grafting contents ranging from 8% to 97% could be synthesized by changing the feed ratios of monomer and activator. The silver nanoparticle (5 – 10 nm) content in a range from 0.1% to 3.5% was uniformly dispersed in the PS-
g
-PEOX graft copolymer matrix. The microphase separation of amphiphilic PS-
g
-PEOX graft copolymer/silver nanoparticle nanocomposite was observed and the microscopic morphology was related to PEOX contents. The hydrophilicity of the amphiphilic PS-
g
-PEOX graft copolymers and water contact angle (WCA) increased with PEOX content. And the WCA of PS-
g
-PEOX graft copolymer film with 97% PEOX content is 24°. What’s more
amphiphilic PS-
g
-PEOX graft copolymers can form stable and uniform micro/nano micelles in water. The stable oil/water suspension can be produced by adding a small amount of PS-
g
-PEOX graft copolymer into the incompatible water/toluene mixed system. The topological structure which formed by introducing PEOX onto PS backbones is beneficial to improve the thermal stability of PEOX. The good hydrophilicity of PEOX branches in PS-
g
-PEOX graft copolymer does a favor to the anti-adsorption properties against bovine serum albumin. The graft copolymer/silver nanoparticle composites behave a good antibacterial activity against
E. coli
which increased with the content of nano silver.
关键词
聚(2-乙基-2-噁唑啉)两亲性接枝共聚物正离子开环聚合
Keywords
Poly(2-ethyl-2-oxazoline)AmphiphilicGraft copolymerCationic ring opening polymerization
Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov A V, Jordan R. Macromol Rapid Commun , 2012 . 33 ( 19 ): 1613 - 1631 . DOI:10.1002/marc.201200354http://doi.org/10.1002/marc.201200354 .
Hoogenboom R. Angew Chem Int Ed , 2010 . 48 ( 44 ): 7978 - 7994.
Sedlacek O, Monnery B D, Filippov S K, Hoogenboom R, Hruby M. Macromol Rapid Commun , 2012 . 33 ( 19 ): 1648 - 1662 . DOI:10.1002/marc.201200453http://doi.org/10.1002/marc.201200453 .
Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Prog Polym Sci , 2006 . 31 ( 12 ): 1068 - 1132 . DOI:10.1016/j.progpolymsci.2006.07.002http://doi.org/10.1016/j.progpolymsci.2006.07.002 .
Carlos R J, Stefan Z, Hartmut K, Franziska K, Karl-Friedrich A, Brigitte V. Macromol Chem Phys , 2010 . 211 ( 6 ): 706 - 716 . DOI:10.1002/macp.v211:6http://doi.org/10.1002/macp.v211:6 .
Kanaoka S, Omura T, Sawamoto M, Higashimura T. Macromolecules , 1992 . 25 ( 25 ): 6407 - 6413.
Wang L L, Wu Y X, Xu R W, Wu G Y, Yang W T. Chinese J Polym Sci , 2010 . 28 ( 3 ): 449 - 456 . DOI:10.1007/s10118-010-9092-zhttp://doi.org/10.1007/s10118-010-9092-z .
Schäfer M, Wieland P C, Nuyken O. J Polym Sci, Part A: Polym Chem , 2002 . 40 ( 21 ): 3725 - 3733 . DOI:10.1002/pola.10472http://doi.org/10.1002/pola.10472 .
Ma W Y, Wu Y X, Li F, Xu R W. Polymer , 2012 . 53 ( 15 ): 3185 - 3193 . DOI:10.1016/j.polymer.2012.05.028http://doi.org/10.1016/j.polymer.2012.05.028 .
Däbritz F, Lederer A, Komber H, Voit B. J Polym Sci, Part A: Polym Chem , 2012 . 50 ( 10 ): 1979 - 1990 . DOI:10.1002/pola.v50.10http://doi.org/10.1002/pola.v50.10 .
Vukomanović M, Repnik U, Zavašnikbergant T. ACS Biomater Sci Eng , 2015 . 1 ( 10 ): 935 - 946 . DOI:10.1021/acsbiomaterials.5b00170http://doi.org/10.1021/acsbiomaterials.5b00170 .
Kempe K, Jacobs S, Lambermont-Thijs H M L, Fijten M M, Hoogenboom R, Schubert U S. Macromolecules , 2010 . 43 ( 9 ): 4098 - 4104 . DOI:10.1021/ma9028536http://doi.org/10.1021/ma9028536 .
Fan H, Wang C, Li Y, Wei Y. J Membr Sci , 2012 . 415 161 - 167.
Synthesis and Two-dimentional Self-assembly of Amphiphilic and Conjugated Polymers Based on Poly(phenylenebutadiynylene)s
In situ Synthesis and Characterization of Chitosan-g-polytetrahydrofuran Graft Copolymer/Ag Nanocomposite via Living Cationic Polymerization
Synthesis and Characterization of Poly(vinyl acetate)-g-polytetrahydrofuran Graft Copolymer with Silver Nanoparticles via Combination of Living Cationic Polymerization and Grafting-onto Approach
Progress in Janus Composites toward Interfacial Engineering
Microstructure and Micromorphology of Poly (γ-benzyl-L-glutamate)-g-(Polytetrahydrofuran-b-Polyisobutylene) Copolymer
Related Author
No data
Related Institution
Key Laboratory of Soft Matter Chemistry, Chinese Academy of Sciences; Department of Polymer Science and Engineering, University of Science and Technology of China
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing Laboratory of Biomedical Materials
State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology
State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences
Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology