Azobenzene (Azo) can absorb specific wavelength light that makes a change from
trans
-state to
cis
-state structure. Energy storage can be achieved by the difference in energy levels between the two isomers
so Azo is often used as energy storage materials. The conventional Azo photo-thermal storage materials have problems of relying on the utilization of ultraviolet light
requiring a high temperature stimulation
and a low-rate heat release. Herein
by utilizing diazonium salt method to introduce thiazole and methoxy groups into Azo to form a push-pull electronic structure
thiazole-heterocyclic Azo (t-Azo-h) achieves fast heat release. The photo-thermal storage composite (t-Azo-h/rGO) is obtained through grafting azo monomers onto the surface of reduced graphene oxide (rGO). Due to the close accumulation of Azo units on the surface of rGO
t-Azo-h/rGO of graphene-templated assembly increases the intermolecular interaction
resulting in an energy storage density of 89 Wh/kg
a half-life of 10 h
and a high power density of 890 W/kg at a heating rate of 5 °C/min. UV spectrum shows the maximum absorption intensity is at 435 nm
realizing absorption of the violet region because of molecular polarizability increased due to push-pull electronic properties. Red shift of spectral absorption broadens the use of sunlight. Owing to fast heat release
t-Azo-h/rGO reaches the temperature difference of 2.6 °C under 60 °C and 3.8 °C under 80 °C
respectively. By designing thermochromic pigment in combination with photo-thermal film
the decoloration occurs in two thermochromic pigments (red → colorless at 62 °C
blue → colorless at 82 °C) due to the heat release of photo-thermal material under heat stimulation. The t-Azo-h/rGO with fast heat release achieves the thermal visualization by optimizing stimulus. By designing push-pull electronic structure
a kind of photo-thermal material with fast thermal output is obtained and photo-thermal material with rapid heat release could finish a higher power density output at low temperature than that of slow heat release. At last
the thermal display with temperature response is realized by combining thermochromic pigments. Thermal display is expected to be applied in temperature supervisory and information encryption field.
Yu M, Cui H, Ai F, Jiang, L, Kong J, Zhu X. Electrochem Commun , 2017 . 86 80 - 84.
Ju D, Zhao T, Dang Y, Zhang G, Hu X, Cui D. J Mater Chem A , 2017 . 5 ( 45 ): 24014 DOI:10.1039/C7TA90247Fhttp://doi.org/10.1039/C7TA90247F .
Luo W, Feng Y, Qin C, Li M, Li S P, Cao C, Feng W. Nanoscale , 2015 . 7 16214 - 16221 . DOI:10.1039/C5NR03558Ahttp://doi.org/10.1039/C5NR03558A .
Dong L, Feng Y, Wang L, Feng W. Chem Soc Rev , 2018 . 47 7339 - 7368 . DOI:10.1039/C8CS00470Fhttp://doi.org/10.1039/C8CS00470F .
Kolpak A M, Grossman J C. Nano Lett , 2011 . 11 3156 - 62 . DOI:10.1021/nl201357nhttp://doi.org/10.1021/nl201357n .
Zhao X, Feng Y, Qin C, Yang W, Si Q, Feng W. ChemSusChem , 2017 . 10 1395 - 1404 . DOI:10.1002/cssc.v10.7http://doi.org/10.1002/cssc.v10.7 .
Yang W, Feng Y, Si Q, Yan Q, Long P, Dong L, Feng W. J Mater Chem A , 2019 . 7 ( 1 ): 97 - 106 . DOI:10.1039/C8TA05333Bhttp://doi.org/10.1039/C8TA05333B .
Beharry A A, Sadovski O, Woolley G A. J Am Chem Soc , 2011 . 133 19684 - 19687 . DOI:10.1021/ja209239mhttp://doi.org/10.1021/ja209239m .
Calbo J, Weston C E, White A J P, Rzepa H, Contrerasgarcía J, Fuchter M J. J Am Chem Soc , 2017 . 139 1261 - 1274 . DOI:10.1021/jacs.6b11626http://doi.org/10.1021/jacs.6b11626 .
Weston C, Richardson R, Haycock P, White A J, Fuchter M J. J Am Chem Soc , 2014 . 136 11878 - 81 . DOI:10.1021/ja505444dhttp://doi.org/10.1021/ja505444d .
Jaume G, Audrius B, Reig M, Nonell S, Velasco D. J Mater Chem C , 2013 . 2 474 - 480.
Dong M, Babalhavaeji A, Hansen M J, Kálmán L, Woolley G A. Chem Commun , 2015 . 51 12981 - 12984 . DOI:10.1039/C5CC02804Chttp://doi.org/10.1039/C5CC02804C .
Kucharski T J, Tian Y, Akbulatov S, Boulatov R. Energy Environ Sci , 2011 . 4 4449 - 4472 . DOI:10.1039/c1ee01861bhttp://doi.org/10.1039/c1ee01861b .
Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chem Soc Rev , 2009 . 39 228 - 240.
Li B, Cao H, Shao J, Qu M. Chem Commun , 2011 . 47 10374 - 10376 . DOI:10.1039/c1cc13462khttp://doi.org/10.1039/c1cc13462k .
Kucharski T J, Ferralis N, Kolpak A M, Zheng J O, Nocera D G, Grossman J C. Nat Chem , 2014 . 6 441 - 447 . DOI:10.1038/nchem.1918http://doi.org/10.1038/nchem.1918 .
Feng W, Luo W, Feng Y. Nanoscale , 2012 . 4 6118 - 6134 . DOI:10.1039/c2nr31505jhttp://doi.org/10.1039/c2nr31505j .
Miralles D G, Teuling A J, Heerwaarden C C V, Arellano J V D. Nat Geosci , 2014 . 7 345 - 349 . DOI:10.1038/ngeo2141http://doi.org/10.1038/ngeo2141 .
Long P, Feng Y, Cao C, Li Y, Han J, Li S, Feng W. Adv Funct Mater , 2018 . 28 1800791 DOI:10.1002/adfm.201870263http://doi.org/10.1002/adfm.201870263 .
Construction of High Performance Chitosan Based Solid State Ion Thermoelectric Battery and Thermoelectric Performance
Aggregation-induced Emission: A Novel Approach to Studying Polymer Science
Related Author
No data
Related Institution
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Materials Science and Engineering, Northeast Forestry University
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
School of Applied Chemistry and Engineering, University of Science and Technology of China
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Resto-ration and Reconstruction, The Hong Kong University of Science & Technology