浏览全部资源
扫码关注微信
华南理工大学 发光材料与器件国家重点实验室 广州 510640
Published:2019-8,
Published Online:21 June 2019,
Received:27 March 2019,
Revised:30 April 2019,
扫 描 看 全 文
Jie-ming Zheng, Xin-bo Wen, Jia-dong Zhou, Nan Zheng, Zeng-qi Xie. Research Progress on Aggregation Structure of Conjugated Polymers in Multicomponent Blends. [J]. Acta Polymerica Sinica 50(8):775-807(2019)
Jie-ming Zheng, Xin-bo Wen, Jia-dong Zhou, Nan Zheng, Zeng-qi Xie. Research Progress on Aggregation Structure of Conjugated Polymers in Multicomponent Blends. [J]. Acta Polymerica Sinica 50(8):775-807(2019) DOI: 10.11777/j.issn1000-3304.2019.19062.
基于本体异质结的聚合物太阳电池性能与相分离结构特别是聚合物的聚集结构密切相关. 本文综述了一些典型共轭聚合物聚集结构方面的研究进展,详细介绍了基于齐聚噻吩、二噻吩、苯并二噻吩及噻吩衍生物的D-A共聚物、二维共轭聚合物以及嵌段共聚物等体系的聚集结构特点,系统总结了一系列共轭聚合物在不同共混物、处理溶剂、退火温度、共混比例、分子量、侧链原子或基团等条件下相应的聚集结构变化规律. 在众多共轭聚合物中,研究最多的是D-A共聚物,故作重点介绍,而二维共轭聚合物、嵌段共聚物作简要介绍.
Conjugated polymers have attracted much attention due to their unique electronic properties and solution processing methods. The rigid and planar conformational backbone manifests extended
π
-system and the flexible alkyl chain assures the sufficient solubility
which contribute to their tuneable physical and chemical properties and increase the tolerance of film forming and mechanical flexibility. In general
the orthogonal design of functional fragments for conjugated polymers make it accessible for
π
-stacking of conjugated segments and lamellar stacking of interchain interactions. Short-range aggregates or long-range microcrystals would be selectively and/or successively formed by controlling their chemical structures and processing conditions. Such stacking structure in the phase-separated domain is crucial to the high efficient performance of bulk heterojunction solar cells. The aggregation structure of some typical conjugated polymers has recently been reviewed with a view to providing reference for the development of optoelectrics in this study. Here
D-A copolymers based on oligothiophene
dithiophene
benzothiophene and thiophene derivatives
two-dimensional conjugated polymers and block copolymers are introduced in detail. The aggregation structure of a series of conjugated polymers is systematically summarized by using the different processing techniques
such as selective counterpart components
treating solvents and annealing temperature. In addition
the intrinsic motivation of the controllable aggregation structure is discussed from the aspects of molecular weight and side chain groups.
共轭聚合物聚集结构D-A共聚物嵌段共聚物
Conjugated polymersAggregated structuresD-A copolymersBlock copolymers
Cheng Y J, Yang S H, Hsu C S. Chem Rev , 2009 . 109 ( 11 ): 5868 - 5923 . DOI:10.1021/cr900182shttp://doi.org/10.1021/cr900182s .
Lu L, Zheng T, Wu Q, Schneider A M, Zhao D, Yu L. Chem Rev , 2015 . 115 ( 23 ): 12666 - 12731 . DOI:10.1021/acs.chemrev.5b00098http://doi.org/10.1021/acs.chemrev.5b00098 .
Bin H, Gao L, Zhang Z, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. Nat Commun , 2016 . 7 13651 DOI:10.1038/ncomms13651http://doi.org/10.1038/ncomms13651 .
Li Z, Jiang K, Yang G, Lin Lai J Y, Ma T, Zhao J, Ma W, Yan H. Nat Commun , 2016 . 7 13094 DOI:10.1038/ncomms13094http://doi.org/10.1038/ncomms13094 .
Noriega R, Rivnay J, Vandewal K, Koch F, Stingelin N, Smith P, Toney M F, Salleo A. Nat Mater , 2013 . 12 ( 11 ): 1038 DOI:10.1038/nmat3722http://doi.org/10.1038/nmat3722 .
He M, Han W, Ge J, Yang Y, Qiu F, Lin Z. Energy Environ Sci , 2011 . 4 ( 8 ): 2894 - 2902 . DOI:10.1039/c1ee01509ehttp://doi.org/10.1039/c1ee01509e .
He M, Han W, Ge J, Yu W, Yang Y, Qiu F, Lin Z. Nanoscale , 2011 . 3 ( 8 ): 3159 - 3163 . DOI:10.1039/c1nr10293ahttp://doi.org/10.1039/c1nr10293a .
Dong Huanli(董焕丽), Yan Qingqing(燕青青), Hu Wenping(胡文平). Acta Polymerica Sinica(高分子学报) , 2017 . ( 8 ): 1246 - 1260 . DOI:10.11777/j.issn1000-3304.2017.17127http://doi.org/10.11777/j.issn1000-3304.2017.17127 .
Qin R, Li W, Li C, Du C, Veit C, Schleiermacher H-F, Andersson M, Bo Z, Liu Z, Inganas O, Wuerfel U, Zhang F. J Am Chem Soc , 2009 . 131 ( 41 ): 14612 - 14613 . DOI:10.1021/ja9057986http://doi.org/10.1021/ja9057986 .
Du C, Li C, Li W, Chen X, Bo Z, Veit C, Ma Z, Wuerfel U, Zhu H, Hu W, Zhang F. Macromolecules , 2011 . 44 ( 19 ): 7617 - 7624 . DOI:10.1021/ma201477bhttp://doi.org/10.1021/ma201477b .
Kouijzer S, Michels J J, van den Berg M, Gevaerts V S, Turbiez M, Wienk M M, Janssen R A J. J Am Chem Soc , 2013 . 135 ( 32 ): 12057 - 12067 . DOI:10.1021/ja405493jhttp://doi.org/10.1021/ja405493j .
Gee R H, Lacevic N, Fried L E. Nat Mater , 2006 . 5 ( 1 ): 39 - 43.
Ermi B D, Karim A, Douglas J F. J Polym Sci, Part B: Polym Phys , 1998 . 36 ( 1 ): 191 - 200 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488 .
Willemse R C, de Boer A P, van Dam J, Gotsis A D. Polymer , 1999 . 40 ( 4 ): 827 - 834 . DOI:10.1016/S0032-3861(98)00307-3http://doi.org/10.1016/S0032-3861(98)00307-3 .
Bin Haijun(宾海军), Li Yongfang(李永舫). Acta Polymerica Sinica(高分子学报) , 2017 . ( 9 ): 1444 - 1461 . DOI:10.11777/j.issn1000-3304.2017.17119http://doi.org/10.11777/j.issn1000-3304.2017.17119 .
Wang H, Chen L, Xing R, Liu J, Han Y. Langmuir , 2015 . 31 ( 1 ): 469 - 479 . DOI:10.1021/la5037772http://doi.org/10.1021/la5037772 .
Zhou K, Zhang R, Liu J, Li M, Yu X, Xing R, Han Y. ACS Appl Mater Interfaces , 2015 . 7 ( 45 ): 25352 - 25361 . DOI:10.1021/acsami.5b07605http://doi.org/10.1021/acsami.5b07605 .
Zhang R, Yang H, Zhou K, Zhang J, Yu X, Liu J, Han Y. Macromolecules , 2016 . 49 ( 18 ): 6987 - 6996 . DOI:10.1021/acs.macromol.6b01526http://doi.org/10.1021/acs.macromol.6b01526 .
Zhou K, Liu J, Li M, Yu X, Xing R, Han Y. J Phys Chem C , 2015 . 119 ( 4 ): 1729 - 1736 . DOI:10.1021/jp511370xhttp://doi.org/10.1021/jp511370x .
Hu H, Chow P C Y, Zhang G, Ma T, Liu J, Yang G, Yan H. Acc Chem Res , 2017 . 50 ( 10 ): 2519 - 2528 . DOI:10.1021/acs.accounts.7b00293http://doi.org/10.1021/acs.accounts.7b00293 .
Chen S, Liu Y, Zhang L, Chow P C Y, Wang Z, Zhang G, Ma W, Yan H. J Am Chem Soc , 2017 . 139 ( 18 ): 6298 - 6301 . DOI:10.1021/jacs.7b01606http://doi.org/10.1021/jacs.7b01606 .
Cao F Y, Tseng C C, Lin F Y, Chen Y, Yan H, Cheng Y J. Chem Mater , 2017 . 29 ( 23 ): 10045 - 10052 . DOI:10.1021/acs.chemmater.7b03688http://doi.org/10.1021/acs.chemmater.7b03688 .
Kang H, Uddin M A, Lee C, Kim K-H, Nguyen T L, Lee W, Li Y, Wang C, Woo H Y, Kim B J. J Am Chem Soc , 2015 . 137 ( 6 ): 2359 - 2365 . DOI:10.1021/ja5123182http://doi.org/10.1021/ja5123182 .
Lee C, Li Y, Lee W, Lee Y, Choi J, Kim T, Wang C, Gomez E D, Woo H Y, Kim B J. Macromolecules , 2016 . 49 ( 14 ): 5051 - 5058 . DOI:10.1021/acs.macromol.6b01069http://doi.org/10.1021/acs.macromol.6b01069 .
Wang M, Hu X, Liu L, Duan C, Liu P, Ying L, Huang F, Cao Y. Macromolecules , 2013 . 46 ( 10 ): 3950 - 3958 . DOI:10.1021/ma400355whttp://doi.org/10.1021/ma400355w .
Zhong W, Sun S, Ying L, Liu F, Lan L, Huang F, Cao Y. ACS Appl Mater Interfaces , 2017 . 9 ( 8 ): 7315 - 7321 . DOI:10.1021/acsami.6b13673http://doi.org/10.1021/acsami.6b13673 .
Zhang M, Guo X, Li Y. Macromolecules , 2011 . 44 ( 22 ): 8798 - 8804 . DOI:10.1021/ma201976thttp://doi.org/10.1021/ma201976t .
Cho H H, Kang T E, Kim K H, Kang H, Kim H J, Kim B J. Macromolecules , 2012 . 45 ( 16 ): 6415 - 6423 . DOI:10.1021/ma301362thttp://doi.org/10.1021/ma301362t .
Kim J H, Song C E, Shin N, Kang H, Wood S, Kang I N, Kim B J, Kim B, Kim J S, Shin W S, Hwang D H. ACS Appl Mater Interfaces , 2013 . 5 ( 24 ): 12820 - 12831 . DOI:10.1021/am401926hhttp://doi.org/10.1021/am401926h .
Zhang M, Fan H, Guo X, He Y, Zhang Z G, Min J, Zhang J, Zhao G, Zhan X, Li Y. Macromolecules , 2010 . 43 ( 21 ): 8714 - 8717 . DOI:10.1021/ma1018654http://doi.org/10.1021/ma1018654 .
Luo C, Kyaw A K K, Perez L A, Patel S, Wang M, Grimm B, Bazan G C, Kramer E J, Heeger A J. Nano Lett , 2014 . 14 ( 5 ): 2764 - 2771 . DOI:10.1021/nl500758whttp://doi.org/10.1021/nl500758w .
Perez L A, Zalar P, Ying L, Schmidt K, Toney M F, Nguyen T Q, Bazan G C, Kramer E J. Macromolecules , 2014 . 47 ( 4 ): 1403 - 1410 . DOI:10.1021/ma4019679http://doi.org/10.1021/ma4019679 .
Bridges C R, Ford M J, Thomas E M, Gomez C, Bazan G C, Segalman R A. Macromolecules , 2018 . 51 ( 21 ): 8597 - 8604 . DOI:10.1021/acs.macromol.8b01906http://doi.org/10.1021/acs.macromol.8b01906 .
Nguyen T L, Lee C, Kim H, Kim Y, Lee W, Oh J H, Kim B J, Woo H Y. Macromolecules , 2017 . 50 ( 11 ): 4415 - 4424 . DOI:10.1021/acs.macromol.7b00452http://doi.org/10.1021/acs.macromol.7b00452 .
Yuan J, Ford M J, Zhang Y, Dong H, Li Z, Li Y, Nguyen T Q, Bazan G C, Ma W. Chem Mater , 2017 . 29 ( 4 ): 1758 - 1768 . DOI:10.1021/acs.chemmater.6b05365http://doi.org/10.1021/acs.chemmater.6b05365 .
Ying L, Hsu B B Y, Zhan H, Welch G C, Zalar P, Perez L A, Kramer E J, Nguyen T Q, Heeger A J, Wong W Y, Bazan G C. J Am Chem Soc , 2011 . 133 ( 46 ): 18538 - 18541 . DOI:10.1021/ja207543ghttp://doi.org/10.1021/ja207543g .
Piliego C, Holcombe T W, Douglas J D, Woo C H, Beaujuge P M, Fréchet J M. J Am Chem Soc , 2010 . 132 ( 22 ): 7595 - 7597 . DOI:10.1021/ja103275uhttp://doi.org/10.1021/ja103275u .
He R, Yu L, Cai P, Peng F, Xu J, Ying L, Chen J, Yang W, Cao Y. Macromolecules , 2014 . 47 ( 9 ): 2921 - 2928 . DOI:10.1021/ma500333rhttp://doi.org/10.1021/ma500333r .
Zhao R, Bi Z, Dou C, Ma W, Han Y, Liu J, Wang L. Macromolecules , 2017 . 50 ( 8 ): 3171 - 3178 . DOI:10.1021/acs.macromol.7b00386http://doi.org/10.1021/acs.macromol.7b00386 .
Ye L, Zhang S, Zhao W, Yao H, Hou J. Chem Mater , 2014 . 26 ( 12 ): 3603 - 3605 . DOI:10.1021/cm501513nhttp://doi.org/10.1021/cm501513n .
Liu C, Dong S, Cai P, Liu P, Liu S, Chen J, Liu F, Ying L, Russell T P, Huang F, Cao Y. ACS Appl Mater Interfaces , 2015 . 7 ( 17 ): 9038 - 9051 . DOI:10.1021/am5089956http://doi.org/10.1021/am5089956 .
Huang H, Bin H, Peng Z, Qiu B, Sun C, Liebman-Pelaez A, Zhang Z G, Zhu C, Ade H, Zhang Z, Li Y. Macromolecules , 2018 . 51 ( 15 ): 6028 - 6036 . DOI:10.1021/acs.macromol.8b01036http://doi.org/10.1021/acs.macromol.8b01036 .
Bin H, Zhang Z-G, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y. J Am Chem Soc , 2016 . 138 ( 13 ): 4657 - 4664 . DOI:10.1021/jacs.6b01744http://doi.org/10.1021/jacs.6b01744 .
Zhong W, Li K, Cui J, Gu T, Ying L, Huang F, Cao Y. Macromolecules , 2017 . 50 ( 20 ): 8149 - 8157 . DOI:10.1021/acs.macromol.7b01432http://doi.org/10.1021/acs.macromol.7b01432 .
Kranthiraja K, Park S H, Kim H, Gunasekar K, Han G, Kim B J, Kim C S, Kim S, Lee H, Nishikubo R, Saeki A, Jin S H, Song M. ACS Appl Mater Interfaces , 2017 . 9 ( 41 ): 36053 - 36060 . DOI:10.1021/acsami.7b09146http://doi.org/10.1021/acsami.7b09146 .
Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z, Hou J. Macromolecules , 2012 . 45 ( 24 ): 9611 - 9617 . DOI:10.1021/ma301900hhttp://doi.org/10.1021/ma301900h .
Zhang M, Gu Y, Guo X, Liu F, Zhang S, Huo L, Russell T P, Hou J. Adv Mater , 2013 . 25 ( 35 ): 4944 - 4949 . DOI:10.1002/adma.201301494http://doi.org/10.1002/adma.201301494 .
Zhang M, Guo X, Ma W, Zhang S, Huo L, Ade H, Hou J. Adv Mater , 2014 . 26 ( 13 ): 2089 - 2095 . DOI:10.1002/adma.201304631http://doi.org/10.1002/adma.201304631 .
Zhang M, Guo X, Ma W, Ade H, Hou J. Adv mater , 2015 . 27 ( 31 ): 4655 - 4660 . DOI:10.1002/adma.v27.31http://doi.org/10.1002/adma.v27.31 .
Huo L, Liu T, Sun X, Cai Y, Heeger A J, Sun Y. Adv Mater , 2015 . 27 ( 18 ): 2938 - 2944 . DOI:10.1002/adma.v27.18http://doi.org/10.1002/adma.v27.18 .
Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc , 2017 . 139 ( 21 ): 7148 - 7151 . DOI:10.1021/jacs.7b02677http://doi.org/10.1021/jacs.7b02677 .
Zhang S, Qin Y, Zhu J, Hou J. Adv Mater , 2018 . 30 ( 20 ): 1800868 DOI:10.1002/adma.v30.20http://doi.org/10.1002/adma.v30.20 .
Fei Z, Eisner F D, Jiao X, Azzouzi M, Röhr J A, Han Y, Shahid M, Chesman A S R, Easton C D, McNeill C R, Anthopoulos T D, Nelson J, Heeney M. Adv Mater , 2018 . 30 ( 8 ): 1705209 DOI:10.1002/adma.v30.8http://doi.org/10.1002/adma.v30.8 .
Kim J S, Han J, Kim Y, Park H, Coote J P, Stein G E, Kim B J. Macromolecules , 2018 . 51 ( 11 ): 4077 - 4084 . DOI:10.1021/acs.macromol.8b00795http://doi.org/10.1021/acs.macromol.8b00795 .
Feng S, Liu C, Xu X, Liu X, Zhang L, Nian Y, Cao Y, Chen J. ACS Macro Letters , 2017 . 6 ( 11 ): 1310 - 1314 . DOI:10.1021/acsmacrolett.7b00738http://doi.org/10.1021/acsmacrolett.7b00738 .
Yu X, Yang H, Wu S, Geng Y, Han Y. Macromolecules , 2012 . 45 ( 1 ): 266 - 274 . DOI:10.1021/ma201024zhttp://doi.org/10.1021/ma201024z .
Yang H, Zhang R, Wang L, Zhang J, Yu X, Liu J, Xing R, Geng Y, Han Y. Macromolecules , 2015 . 48 ( 20 ): 7557 - 7566 . DOI:10.1021/acs.macromol.5b01804http://doi.org/10.1021/acs.macromol.5b01804 .
Liu X, Zhang C, Duan C, Li M, Hu Z, Wang J, Liu F, Li N, Brabec C J, Janssen R A J, Bazan G C, Huang F, Cao Y. J Am Chem Soc , 2018 . 140 ( 28 ): 8934 - 8943 . DOI:10.1021/jacs.8b05038http://doi.org/10.1021/jacs.8b05038 .
Liu P, Zhang K, Liu F, Jin Y, Liu S, Russell T P, Yip H L, Huang F, Cao Y. Chem Mater , 2014 . 26 ( 9 ): 3009 - 3017 . DOI:10.1021/cm500953ehttp://doi.org/10.1021/cm500953e .
Lee W, Kim J S, Kim H J, Shin J M, Ku K H, Yang H, Lee J, Bae J G, Lee W B, Kim B J. Macromolecules , 2015 . 48 ( 16 ): 5563 - 5569 . DOI:10.1021/acs.macromol.5b01068http://doi.org/10.1021/acs.macromol.5b01068 .
Kim Y, Kim H J, Kim J S, Yun H, Park H, Han J, Kim B J. Chem Mater , 2018 . 30 ( 21 ): 7912 - 7921 . DOI:10.1021/acs.chemmater.8b03510http://doi.org/10.1021/acs.chemmater.8b03510 .
Coote J P, Kim J S, Lee B, Han J, Kim B J, Stein G E. Macromolecules , 2018 . 51 ( 22 ): 9276 - 9283 . DOI:10.1021/acs.macromol.8b01985http://doi.org/10.1021/acs.macromol.8b01985 .
Facchetti A. Chem Mater , 2011 . 23 ( 3 ): 733 - 758 . DOI:10.1021/cm102419zhttp://doi.org/10.1021/cm102419z .
Kang T E, Choi J, Cho H H, Yoon S C, Kim B J. Macromolecules , 2016 . 49 ( 6 ): 2096 - 2105 . DOI:10.1021/acs.macromol.5b02772http://doi.org/10.1021/acs.macromol.5b02772 .
Ku S Y, Brady M A, Treat N D, Cochran J E, Robb M J, Kramer E J, Chabinyc M L, Hawker C J. J Am Chem Soc , 2012 . 134 ( 38 ): 16040 - 16046 . DOI:10.1021/ja307431khttp://doi.org/10.1021/ja307431k .
0
Views
48
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution