Rong Yan, Ling Zhang, Chun-zhong Li. Study on the Construction of 3D-BN Network in Epoxy Resin by Introducing Foam Skeleton. [J]. Acta Polymerica Sinica 50(11):1202-1210(2019)
DOI:
Rong Yan, Ling Zhang, Chun-zhong Li. Study on the Construction of 3D-BN Network in Epoxy Resin by Introducing Foam Skeleton. [J]. Acta Polymerica Sinica 50(11):1202-1210(2019) DOI: 10.11777/j.issn1000-3304.2019.19064.
Study on the Construction of 3D-BN Network in Epoxy Resin by Introducing Foam Skeleton
It is a traditional method to improve the thermal conductivity of matrix by adding fillers. However
it is a great challenge to construct a dense heat conduction network in composite material. The current researches on building thermal conductive network is to combine different fillers through structure design for achieving high thermal conductivity with the lowest possible filler content. Due to the electrical insulation requirements of electronic equipment
hexagonal boron nitride (h-BN) has been extensively studied as an inorganic thermal conductive filler. It has a layer structure that shows a relatively high TC of 300 W·m
–1
·K
–1
in the h-BN planar direction. In this study
the foam was introduced into the epoxy resin as a skeleton
and thermal conductive network was constructed by immersing the BN/E51 mixture into the foam. By comparing the hot deformation behavior of two kinds of foams with different structures and compositions: polyurethane foam (PF) and nano-melamine (melamine) foam (MF)
epoxy resin-based composites with high thermal conductivity were obtained by hot press curing under the right compression ratio. PF has a large single arm size and good elastic deformation ability
but it is easy to become a barrier between BN
which is bad for forming thermal conductive path after compression. However
MF has a small single arm size and can be broken into four needle-like scaffold structures after compression. The needle-like scaffold structure promotes the good dispersion of BN
and finally forms a thermal path of BN throughout the material
which plays a key role in improving the thermal conductivity of the composite. As a result
MF-BN/E51 showed an excellent thermal conductivity of 3.88 W·m
–1
·K
–1
at 41 wt% BN load when the degree of hot pressing was 90%. It provides a new way for the composites to achieve a higher thermal conductivity with a less filler load.
Chen H Y, Valeriy V, Ginzburg B, Yang J, Yang Y F, Liu W, Huang Y, Du L B, Chen B. Prog Polym Sci , 2016 . 59 41 - 85 . DOI:10.1016/j.progpolymsci.2016.03.001http://doi.org/10.1016/j.progpolymsci.2016.03.001 .
Xie B H, Huang X, Zhang G J. Compos Sci Technol , 2013 . 85 98 - 103 . DOI:10.1016/j.compscitech.2013.06.010http://doi.org/10.1016/j.compscitech.2013.06.010 .
Zhou T, Wang X, Cheng P, Wang T, Xiong D, Wang X. Express Polym Lett , 2013 . 7 585 - 594 . DOI:10.3144/expresspolymlett.2013.56http://doi.org/10.3144/expresspolymlett.2013.56 .
Jang I, Kyung-Ho Sh, Hyeon K, Juseong K, Wan-Ho K, Sie-Wook J, Jae-Pil K. Colloid Surface A , 2017 . 518 64 - 72 . DOI:10.1016/j.colsurfa.2017.01.011http://doi.org/10.1016/j.colsurfa.2017.01.011 .
Chen J, Huang X Y, Zhu Y K, Jiang P K. Adv Funct Mater , 2017 . 27 ( 5 ): 1604754 DOI:10.1002/adfm.v27.5http://doi.org/10.1002/adfm.v27.5 .
Kwon Q H, Ha T, Kim D G, Kim B G, Kim Y S, Shin T J, Koh W G, Lim H S, Yoo J Y. ACS Appl Mater Interfaces , 2018 . 10 34625 - 34633 . DOI:10.1021/acsami.8b12075http://doi.org/10.1021/acsami.8b12075 .
Li Z, Ju D, Han L, Dong L. Thermochim Acta , 2017 . 652 9 - 16 . DOI:10.1016/j.tca.2017.03.006http://doi.org/10.1016/j.tca.2017.03.006 .
Jiang Y, Liu Y, Min P, Sui G. Compos Sci Technol , 2017 . 144 63 - 69 . DOI:10.1016/j.compscitech.2017.03.023http://doi.org/10.1016/j.compscitech.2017.03.023 .
Pak S Y, Kim H M, Kim S Y, Youn J R. Carbon , 2012 . 50 4830 - 4838 . DOI:10.1016/j.carbon.2012.06.009http://doi.org/10.1016/j.carbon.2012.06.009 .
Wu K, Fang J Ch, Ma J R, Huang R, Chai S G, Chen F, Fu Q. ACS Appl Mater Interfaces , 2017 . 9 30035 - 30045 . DOI:10.1021/acsami.7b08214http://doi.org/10.1021/acsami.7b08214 .
Zeng X, Yao Y, Gong Z, Wang F F, Sun R, Xu J B, Wong C P. Small , 2015 . 11 ( 46 ): 6205 - 6213 . DOI:10.1002/smll.v11.46http://doi.org/10.1002/smll.v11.46 .
Cho E C, Chang-Jian C W, Hsiao Y S, Lee K Ch, Huang J H. Compos Part A: Appl S , 2016 . 90 678 - 686 . DOI:10.1016/j.compositesa.2016.08.035http://doi.org/10.1016/j.compositesa.2016.08.035 .
Wu D, Gao X, Sun J, Guo Z. Compos Part A: Appl S , 2017 . 102 88 - 95 . DOI:10.1016/j.compositesa.2017.07.027http://doi.org/10.1016/j.compositesa.2017.07.027 .
Cho H B, Nakayama T, Suematsu H. Compos Sci Technol , 2016 . 129 205 - 213 . DOI:10.1016/j.compscitech.2016.04.033http://doi.org/10.1016/j.compscitech.2016.04.033 .
Tian J, Shi Y Q, Fan W, Liu T X. Compos Commun , 2019 . 12 21 - 25 . DOI:10.1016/j.coco.2018.12.003http://doi.org/10.1016/j.coco.2018.12.003 .
Huang L, Li Y F, Wang C, Zhang C, Liu T X. Compos Commun , 2018 . 8 83 - 91 . DOI:10.1016/j.coco.2017.11.005http://doi.org/10.1016/j.coco.2017.11.005 .
Hu J, Huang Y, Yao Y, Pan G, Sun J, Zeng X, Sun R, Xu J, Song B, Wong C. ACS Appl Mater Interfaces , 2017 . 9 13544 - 13553 . DOI:10.1021/acsami.7b02410http://doi.org/10.1021/acsami.7b02410 .
Wang Z G, Huang Y F, Zhang G Q, Wang H Q, Xu J Z, Lei J, Zhu L, Gong F, Li Z M. Ind Eng Chem Res , 2018 . 57 10391 - 10397 . DOI:10.1021/acs.iecr.8b01764http://doi.org/10.1021/acs.iecr.8b01764 .
Li W Y, Song Z Q, Qian J, Tan Z Y, Chu H Y, Wu Q Y, Nie W. Compos Sci Technol , 2018 . 163 71 - 80 . DOI:10.1016/j.compscitech.2018.05.008http://doi.org/10.1016/j.compscitech.2018.05.008 .
Cui X L, Ding P, Zhuang N, Shi L Y, Song N, Tang S F. ACS Appl Mater Interfaces , 2015 . 7 19068 - 19075 . DOI:10.1021/acsami.5b04444http://doi.org/10.1021/acsami.5b04444 .
Recent Advances in Halogen-free Flame-retardant Polyurethane Foams
Green Fabrication of Flexible, Thermally Conductive Graphene-carbonized Chinese Art Paper Composite Film
Related Author
No data
Related Institution
(Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, )
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University
College of Materials Science and Engineering, Qingdao University of Science and Technology