浏览全部资源
扫码关注微信
东华大学纺织科技创新中心 上海 200051
Published:2019-8,
Published Online:12 June 2019,
Received:9 April 2019,
Revised:21 May 2019,
扫 描 看 全 文
Bin Ding. Functional Polymeric Micro/Nano-fibrous Materials. [J]. Acta Polymerica Sinica 50(8):764-774(2019)
Bin Ding. Functional Polymeric Micro/Nano-fibrous Materials. [J]. Acta Polymerica Sinica 50(8):764-774(2019) DOI: 10.11777/j.issn1000-3304.2019.19069.
纤维直径细化带来的尺寸效应和表面效应赋予微纳米纤维许多独特的性质,使其成为当前纤维材料领域研究的重点和前沿. 在众多的微纳米纤维加工方法中,静电纺丝法因具有可纺原料种类丰富、纤维结构可调性好、多元技术结合性强等优势而成为当前制备微纳米聚合物纤维的重要方法之一. 近年来,本课题组在静电纺微纳米聚合物纤维材料的可控加工及应用方面开展了系列研究,本专论主要介绍了其中关于超细纳米蛛网材料、致密粘连微纳米纤维膜、多级网孔纤维气凝胶的结构成型机制及其特效应用方面的工作,并对功能微纳米聚合物纤维材料的未来发展方向进行了展望.
Benefiting from intensive size effect and surface effect arising from thin fibers
micro/nano-fibrous membranes exhibit many fascinating properties and have become a hot spot and leading edge in the fiber materials. Among the existing processing approaches for micro/nano-fibers
electrospinning has proven to be one of the most effective and promising method due to its integrated characteristics
including broad availability to varieties of polymers
adjustable porous structure
and superior technological convergence. In recent years
our research group have endeavored systematic researches on the controllable fabrication and applications of electrospun micro/nano-fibrous materials
especially in the terms of ultra-thin nanonets
compactly bonded membranes and porous fibrous aerogels. This review mainly puts focus on the formation mechanisms and applications of these distinctive micro/nano-fibrous materials
which are summarized as follows. Firstly
the two-dimensional nanonets with extremely small diameters (
<
20 nm) are fabricated by a novel electrospinning/netting technique
and the deformation-phase transition of the charged jets/droplets from polymer solution during the period is also revealed
which have broken the bottleneck of the thinning on diameter of electrospun fibers. And the novel nanonets demonstrate lower air resistance due to the slip flow of air molecules on the periphery of nanofibers
holding great promise as an exceptional candidate for air filtration. Secondly
compactly bonded membranes with stable porous structures are constructed directly through the regulation of the relative humidity
and the effects of relative humidity on electrospinning jet stretching and solidification are investigated. Additionally
hydrophobicly modified compactly bonded membranes demonstrate excellent waterproofness and breathability
thus implying their potential application in selective separation of gas-liquid medium. Thirdly
the ultralight polymeric micro/nano-fibrous aerogels with hierarchical cellular structure and superelasticity are prepared
via
a novel three-dimensional fibrous framework reconstruction method
which exhibit the integrated properties of extremely low density (minimum of 0.12 mg/cm
3
)
super recyclable compressibility and multifunctionality of combining the thermal insulation
sound absorption
emulsion separation and elasticity-responsive electric conduction. The future perspectives of micro/nano-fibrous materials were also given at the end of this review.
微纳米纤维静电纺丝纳米蛛网致密粘连纤维膜纤维气凝胶
Micro/nano-fibersElectrospinningNanonetsCompactly bonded membranesFibrous aerogels
Ding Bin(丁彬), Yu Jianyong(俞建勇). Functional Electrospinning Nanofibrous Materials(功能静电纺纤维材料). Beijing(北京): China Textile & Apprel Press(中国纺织出版社), 2019. 1-14
Zhang Zhitao(张智涛), Zhang Ye(张晔), Li Yiming(李一明), Peng Huisheng(彭慧胜) . 2016 . ( 10 ): 1284 - 1299 . DOI:10.11777/j.issn1000-3304.2016.16185http://doi.org/10.11777/j.issn1000-3304.2016.16185 .
Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. Compos Sci Technol , 2003 . 63 ( 15 ): 2223 - 2253 . DOI:10.1016/S0266-3538(03)00178-7http://doi.org/10.1016/S0266-3538(03)00178-7 .
Wang X F, Ding B, Li B Y. Mater Today , 2013 . 16 ( 6 ): 229 - 241 . DOI:10.1016/j.mattod.2013.06.005http://doi.org/10.1016/j.mattod.2013.06.005 .
Joshi M, Butola B S, Saha K. J Nanosci Nanotechnol , 2014 . 14 ( 1 ): 853 - 867 . DOI:10.1166/jnn.2014.9083http://doi.org/10.1166/jnn.2014.9083 .
Kim B S, Kim I S. Polym Rev , 2011 . 51 ( 3 ): 235 - 238 . DOI:10.1080/15583724.2011.599507http://doi.org/10.1080/15583724.2011.599507 .
Greiner A, Wendorff J H. Angew Chem , 2007 . 46 ( 30 ): 5670 - 5703 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Li D, Xia Y N. Adv Mater , 2004 . 16 ( 14 ): 1151 - 1170 . DOI:10.1002/adma.200400719http://doi.org/10.1002/adma.200400719 .
Ding Bin(丁彬), Yu Jianyong(俞建勇). Electrospinning and Nanofibers(静电纺丝与纳米纤维). Beijing(北京): China Textile & Apprel Press(中国纺织出版社), 2016. 3-7
Yu X, Wu X H, Si Y, Wang X F, Yu J Y, Ding B. Adv Mater Interfaces , 2019 . 1800931 1 - 19.
Han Z Y, Cheng Z Q, Chen Y, Li B, Liang Z W, Li H F, Ma Y J, Feng X. Nanoscale , 2019 . 11 592 - 5950.
Panda P K. T Indian Ceram Soc , 2007 . 66 ( 2 ): 65 - 76 . DOI:10.1080/0371750X.2007.11012252http://doi.org/10.1080/0371750X.2007.11012252 .
Lee J K Y, Chen N, Peng S, Li L, Tian L, Thakor N, Ramakrishna S. Prog Polym Sci , 2018 . 86 40 - 84 . DOI:10.1016/j.progpolymsci.2018.07.002http://doi.org/10.1016/j.progpolymsci.2018.07.002 .
Pereao O K, Bode-Aluko C, Ndayambaje G, Fatoba O, Petrik L F. J Polym Environ , 2017 . 25 ( 4 ): 1175 - 1189 . DOI:10.1007/s10924-016-0896-yhttp://doi.org/10.1007/s10924-016-0896-y .
Thavasi V, Singh G, Ramakrishna S. Energy Environ Sci , 2008 . 1 ( 2 ): 205 - 221 . DOI:10.1039/b809074mhttp://doi.org/10.1039/b809074m .
Ding J X, Zhang J, Li J N, Li D, Xiao C S, Xiao H H, Yang H H, Zhuang X L, Chen X S. Prog Polym Sci , 2019 . 90 1 - 34 . DOI:10.1016/j.progpolymsci.2019.01.002http://doi.org/10.1016/j.progpolymsci.2019.01.002 .
Ding Y, Li W, Zhang F, Liu Z, Ezazi N Z, Liu D, Santos H A. Adv Funct Mater , 2019 . 29 ( 2 ): 1802852 DOI:10.1002/adfm.v29.2http://doi.org/10.1002/adfm.v29.2 .
Yu S, Myung N V. Electroanalysis , 2018 . 30 ( 10 ): 2330 - 2338 . DOI:10.1002/elan.v30.10http://doi.org/10.1002/elan.v30.10 .
Du J, Shintay S, Zhang X. J Polym Sci, Part B: Polym Phys , 2008 . 46 ( 15 ): 1611 - 1618 . DOI:10.1002/polb.v46:15http://doi.org/10.1002/polb.v46:15 .
Wongsasulak S, Patapeejumruswong M, Weiss J, Supaphol P, Yoovidhya, T. J Food Eng , 2010 . 98 ( 3 ): 370 - 376 . DOI:10.1016/j.jfoodeng.2010.01.014http://doi.org/10.1016/j.jfoodeng.2010.01.014 .
Yu J H, Fridrikh S V, Rutledge G C. Adv Mater , 2004 . 16 ( 17 ): 1562 - 1566 . DOI:10.1002/adma.200306644http://doi.org/10.1002/adma.200306644 .
Ding B, Li C R, Miyauchi Y, Kuwaki O, Shiratori S. Nanotechnol , 2006 . 17 ( 15 ): 3685 - 3691 . DOI:10.1088/0957-4484/17/15/011http://doi.org/10.1088/0957-4484/17/15/011 .
Zhang S C, Chen K, Yu J Y, Ding B. Polymer , 2015 . 74 182 - 192 . DOI:10.1016/j.polymer.2015.08.002http://doi.org/10.1016/j.polymer.2015.08.002 .
Zhang S C, Liu H, Tang N, Ge J L, Yu J Y, Ding B. Nat Commun , 2019 . 10 ( 1 ): 1458 DOI:10.1038/s41467-019-09444-yhttp://doi.org/10.1038/s41467-019-09444-y .
Wang X F, Ding B, Sun G, Wang M R, Yu J Y. Prog Mater Sci , 2013 . 58 ( 8 ): 1173 - 1243 . DOI:10.1016/j.pmatsci.2013.05.001http://doi.org/10.1016/j.pmatsci.2013.05.001 .
Hu J P, Wang X F, Ding B, Lin J Y, Yu J Y, Sun G. Macromol Rapid Commun , 2011 . 32 ( 21 ): 1729 - 1734 . DOI:10.1002/marc.201100343http://doi.org/10.1002/marc.201100343 .
Sahay R, Teo C J, Chew Y T. J Fluid Mech , 2013 . 735 150 - 175 . DOI:10.1017/jfm.2013.497http://doi.org/10.1017/jfm.2013.497 .
Bhardwaj N, Kundu S C. Biotechnol Adv , 2010 . 28 ( 3 ): 325 - 347 . DOI:10.1016/j.biotechadv.2010.01.004http://doi.org/10.1016/j.biotechadv.2010.01.004 .
Jaworek A, Krupa A. J Aerosol Sci , 1999 . 30 ( 7 ): 873 - 893 . DOI:10.1016/S0021-8502(98)00787-3http://doi.org/10.1016/S0021-8502(98)00787-3 .
Griffiths, David J. Am J Phys , 2005 . 73 ( 6 ): 574 - 574.
Laval G, Mercier C, Pellat R. Nucl Fusion , 1965 . 5 ( 2 ): 156 - 168 . DOI:10.1088/0029-5515/5/2/007http://doi.org/10.1088/0029-5515/5/2/007 .
Dayal P, Kyu T. J Appl Phys , 2006 . 100 ( 4 ): 43512 DOI:10.1063/1.2259812http://doi.org/10.1063/1.2259812 .
Dayal P, Kyu T. Phys Fluids , 2007 . 19 ( 10 ): 107106 DOI:10.1063/1.2800277http://doi.org/10.1063/1.2800277 .
Zuo F L, Zhang S C, Liu H, Fong H, Yin X, Yu J Y, Ding B. Small , 2017 . 13 ( 46 ): 1702139 DOI:10.1002/smll.v13.46http://doi.org/10.1002/smll.v13.46 .
Zhao X L, Wang S, Yin X, Yu J Y, Ding B. Sci Rep , 2016 . 6 35472 DOI:10.1038/srep35472http://doi.org/10.1038/srep35472 .
Li P, Wang C Y, Zhang Y Y, Wei F. Small , 2014 . 10 ( 22 ): 4543 - 4561 . DOI:10.1002/smll.v10.22http://doi.org/10.1002/smll.v10.22 .
Maze B, Tafreshi V T, Wang Q, Pourdeyhimi B. J Aerosol Sci , 2007 . 38 550 - 570 . DOI:10.1016/j.jaerosci.2007.03.008http://doi.org/10.1016/j.jaerosci.2007.03.008 .
Liu Y, Zhang G K, Zhuang X P, Li S S, Shi L, Kang W M, Cheng B W, Xu X L. Polymers , 2019 . 11 ( 2 ): 364 DOI:10.3390/polym11020364http://doi.org/10.3390/polym11020364 .
Na H N, Li Q Y, Sun H, Zhao C, Yuan X Y. Polymer Eng Sci , 2009 . 49 ( 7 ): 1291 - 1298 . DOI:10.1002/pen.v49:7http://doi.org/10.1002/pen.v49:7 .
Sheng J L, Xu Y, Yu J Y, Ding B. ACS Appl Mater Interfaces , 2017 . 9 ( 17 ): 15139 - 15147 . DOI:10.1021/acsami.7b02594http://doi.org/10.1021/acsami.7b02594 .
Li X, Lin J Y, Bian F G, Zeng Y C. J Polym Sci, Part B: Polym Phys , 2018 . 56 ( 1 ): 36 - 45 . DOI:10.1002/polb.24534http://doi.org/10.1002/polb.24534 .
Sheng J L, Zhang M, Xu Y, Yu J Y, Ding B. ACS Appl Mater Interfaces , 2016 . 8 ( 40 ): 27218 - 27226 . DOI:10.1021/acsami.6b09392http://doi.org/10.1021/acsami.6b09392 .
Pelipenko J, Kristl J, Jankovic B, Baumgartner S, Kocbek P. Int J Pharmaceut , 2013 . 456 ( 1 ): 125 - 134 . DOI:10.1016/j.ijpharm.2013.07.078http://doi.org/10.1016/j.ijpharm.2013.07.078 .
Thompson C J, Chase G G, Yarin A L, Reneker D H. Polymer , 2007 . 48 ( 23 ): 6913 - 6922 . DOI:10.1016/j.polymer.2007.09.017http://doi.org/10.1016/j.polymer.2007.09.017 .
Li Y, Yang F F, Yu J Y, Ding B. Adv Mater Interfaces , 2016 . 3 ( 19 ): 1600516 DOI:10.1002/admi.201600516http://doi.org/10.1002/admi.201600516 .
Jiang G S, Luo L Q, Tan L, Wang J L, Zhang S X, Zhang F, Jin J. ACS Appl Mater Interfaces , 2018 . 10 ( 33 ): 28210 - 28218 . DOI:10.1021/acsami.8b08191http://doi.org/10.1021/acsami.8b08191 .
Miao D Y, Huang Z, Wang X F, Yu J Y, Ding B. Small , 2018 . 14 ( 32 ): 1801527 DOI:10.1002/smll.v14.32http://doi.org/10.1002/smll.v14.32 .
Wang J L, Raza A, Si Y, Cui L X, Ge J F, Ding B, Yu J Y. Nanoscale , 2012 . 4 ( 23 ): 7549 - 7556 . DOI:10.1039/c2nr32883fhttp://doi.org/10.1039/c2nr32883f .
Zhao J, Li Y, Sheng J L, Wang X F, Liu L F, Yu J Y, Ding B. ACS Appl Mater Interfaces , 2017 . 9 ( 34 ): 29302 - 29310 . DOI:10.1021/acsami.7b08885http://doi.org/10.1021/acsami.7b08885 .
Li Y, Zhu Z G, Yu J Y, Ding B. ACS Appl Mater Interfaces , 2015 . 7 ( 24 ): 13538 - 13546 . DOI:10.1021/acsami.5b02848http://doi.org/10.1021/acsami.5b02848 .
Gu X Y, Li N, Cao J, Xiong J. Polym Eng Sci , 2018 . 58 ( 8 ): 1381 - 1390 . DOI:10.1002/pen.v58.8http://doi.org/10.1002/pen.v58.8 .
Guex A G, Weidenbacher L, Maniura-Weber K, Rossi R M, Fortunato G. Macromol Mater Eng , 2017 . 302 ( 10 ): 1700081 DOI:10.1002/mame.v302.10http://doi.org/10.1002/mame.v302.10 .
Li Z L, Shen J L, Abdalla I, Yu J Y, Ding B. Nano Energy , 2017 . 36 341 - 348 . DOI:10.1016/j.nanoen.2017.04.035http://doi.org/10.1016/j.nanoen.2017.04.035 .
Lukas D, Sarkar A, Martinova L, Vodsed A, Lubasova D, Chaloupek J, Pokorny P, Mikes P, Chvojka J, Komarek M. Text Prog , 2009 . 40 ( 2 ): 59 - 140.
Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, Franzese O. Acta Biomater , 2010 . 6 ( 4 ): 1227 - 1237 . DOI:10.1016/j.actbio.2009.10.051http://doi.org/10.1016/j.actbio.2009.10.051 .
Teo W E, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S. Polymer , 2007 . 48 ( 12 ): 3400 - 3405 . DOI:10.1016/j.polymer.2007.04.044http://doi.org/10.1016/j.polymer.2007.04.044 .
Zhang D M, Chang J. Nano Lett , 2008 . 8 ( 10 ): 3283 - 3287 . DOI:10.1021/nl801667shttp://doi.org/10.1021/nl801667s .
Cai Q, Yang J A, Bei J Z, Wang S G. Biomaterials , 2002 . 23 ( 23 ): 4483 - 4492 . DOI:10.1016/S0142-9612(02)00168-0http://doi.org/10.1016/S0142-9612(02)00168-0 .
Si Y, Yu J Y, Tang X M, Ge J L, Ding B. Nat Commun , 2014 . 5 5802 DOI:10.1038/ncomms6802http://doi.org/10.1038/ncomms6802 .
Ding Bin(丁彬), Si Yang(斯阳), Hong Feifei(洪菲菲), Yan Chengcheng(闫成成), Wang Xueqin(王雪琴), Yu Jianyong(俞建勇) . 2015 . 60 ( 21 ): 1992 - 2002.
Si Y, Fu Q X, Wang X Q, Zhu J, Yu J Y, Sun G, Ding B. ACS Nano , 2015 . 9 ( 4 ): 3791 - 3799 . DOI:10.1021/nn506633bhttp://doi.org/10.1021/nn506633b .
Si Y, Wang X Q, Yan C C, Yang L, Yu J Y, Ding B. Adv Mater , 2016 . 28 ( 43 ): 9512 - 9518 . DOI:10.1002/adma.201603143http://doi.org/10.1002/adma.201603143 .
Si Y, Wang L H, Wang X Q, Tang N, Yu J Y, Ding B. Adv Mater , 2017 . 29 ( 24 ): 1700339 DOI:10.1002/adma.201700339http://doi.org/10.1002/adma.201700339 .
Si Y, Wang X Q, Dou L Y, Yu J Y, Ding B. Sci Adv , 2018 . 4 ( 4 ): eaas8925 DOI:10.1126/sciadv.aas8925http://doi.org/10.1126/sciadv.aas8925 .
Cao L T, Si Y, Wu Y Y, Wang X Q, Yu J Y, Ding B. Nanoscale , 2019 . 11 ( 5 ): 2289 - 2298 . DOI:10.1039/C8NR09288Ehttp://doi.org/10.1039/C8NR09288E .
Fu Q X, Si Y, Duan C, Yan Z S, Liu L F, Yu J Y, Di ng, B. Adv Funct Mater , 2019 . 29 1808234 DOI:10.1002/adfm.v29.13http://doi.org/10.1002/adfm.v29.13 .
0
Views
55
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution