Ring-opening polymerization of lactide (LA) is one of the most important techniques to synthesize poly(lactic acid) (PLA). In this work
a series of organocatalysts have been prepared for both solution polymerization and bulk polymerization of LA at ambient conditions. Derived from the facile reactions between phthalimide and quaternaryammonium salt
these catalysts are inexpensive and stable in air. Tetraethylammonium 2-aminobenzoate (TEACB) (catalyst
a
) was first applied to polymerize LLA in toluene solvent
and a conversion of 42.7% was achieved after the reaction proceeded at 25 °C for 1 h. Orthogonal experiments suggested that the optimum condition was reaction temperature of 75 °C
reaction time of 4 h
and the molar ratio of lactide:catalyst
a
:alkoxide equal to 200:10:1
which afforded PLA product with molecular weight of 8.03 kg·mol
–1
polydispersity index (PDI) of 1.53
and a high conversion of 88.5%. Next
bulk polymerization of LLA was carried out at different temperatures to explore the effects of initiator
alcohol salt
reaction time
and the molar ratio of lactide:catalyst:alkoxide. The catalytic activity of the catalysts depended largely on their chemical structures. Under the same reaction temperature
catalyst
b
with larger cation part led to a higher conversion; meanwhile
catalysts
a
and
b
with phenyl group in the anionic part were more active than catalyst
c
bearing an aliphatic group although the latter produced PLA with higher molecular weight and narrower molecular weight distribution. The catalysts developed in this study worked well in the absence of alkoxide
whilst alkoxide and alcohol could improve the performance of the catalyst system. LLA polymerizations could be conveniently performed under atmospheric conditions and increasing temperature resulted in PLA products with higher molecular weight and narrower molecular weight distribution. The conversion reached up to 95.7% after polymerization at 150 °C
in which the
M
n
and PDI of the PLA product equaled 2.57 kg·mol
–1
and 1.24
respectively. DSC measurements indicated that PLAs obtained
via
varied methods displayed similar melting temperatures in the range of 130 – 134 °C. Further
cooperative dual activation of both the monomer and the initiator/chain-end could be confirmed based on MALDI-TOF-MS analyses. This novel catalyst system possesses specific monocomponent hetero-bifunction with H-bonding capability.
Chen L, Hu K, Sun S T, Jiang H, Huang D, Zhang K Y, Pan L, Li Y S. Chinese J Polym Sci , 2018 . 36 ( 12 ): 1342 - 1352 . DOI:10.1007/s10118-018-2143-6http://doi.org/10.1007/s10118-018-2143-6 .
Dalmoro A, Barba A A, Lamberti M, Mazzeo M, Venditto V, Lamberti G. J Mater Sci , 2014 . 49 ( 17 ): 5986 - 5996 . DOI:10.1007/s10853-014-8317-xhttp://doi.org/10.1007/s10853-014-8317-x .
Nofar M, Park C B. Prog Polym Sci , 2014 . 39 ( 10 ): 1721 - 1741 . DOI:10.1016/j.progpolymsci.2014.04.001http://doi.org/10.1016/j.progpolymsci.2014.04.001 .
Hu C Y, Duan R L, Yang J W, Dong S J, Sun Z Q, Pang X, Wang X H, Chen X S. Chinese J Polym Sci , 2018 . 36 ( 10 ): 1123 - 1128 . DOI:10.1007/s10118-018-2129-4http://doi.org/10.1007/s10118-018-2129-4 .
Champouret Y, Visseaux M. Polym Chem-UK , 2018 . 9 2517 - 2531 . DOI:10.1039/C8PY00310Fhttp://doi.org/10.1039/C8PY00310F .
Wu D, Lv Y, Guo R, Li J H, Habadati A, Lu B, Wang H Y, Wei Z. Macromol Res , 2017 . 25 ( 11 ): 1070 - 1075 . DOI:10.1007/s13233-017-5148-zhttp://doi.org/10.1007/s13233-017-5148-z .
Hu J, Kan C, Ma H. Inorg Chem , 2018 . 57 ( 17 ): 11240 - 11251 . DOI:10.1021/acs.inorgchem.8b01839http://doi.org/10.1021/acs.inorgchem.8b01839 .
Li H, Ai B R, Hong M. Chinese J Polym Sci , 2017 . 36 ( 2 ): 231 - 236 . DOI:10.1007/s10118-018-2071-5http://doi.org/10.1007/s10118-018-2071-5 .
Wang Ziyu(王子羽), He Wenwen(何文文), Xu Yunlong(徐云龙), Huang Wei(黄伟), Jiang Wei(江伟), Li Hong(李弘), Zhang Quanxing(张全兴). Acta Polymerica Sinica(高分子学报) , 2018 . ( 7 ): 786 - 796 . DOI:10.11777/j.issn1000-3304.2018.18036http://doi.org/10.11777/j.issn1000-3304.2018.18036 .
Zhang X, Jones G O, Hedrick J L, Waymouth R M. Nat Chem , 2016 . 8 ( 11 ): 1047 - 1053 . DOI:10.1038/nchem.2574http://doi.org/10.1038/nchem.2574 .
Li M, Tao Y, Tang J, Wang Y, Zhang X, Tao Y, Wang X. J Am Chem Soc , 2019 . 141 281 - 289 . DOI:10.1021/jacs.8b09739http://doi.org/10.1021/jacs.8b09739 .
Zhang C J, Duan H Y, Hu L F, Zhang C H, Zhang X H. ChemSusChem , 2018 . 11 ( 24 ): 4209 - 4213 . DOI:10.1002/cssc.v11.24http://doi.org/10.1002/cssc.v11.24 .
Nederberg F, Connor E F, Möller M. Angew Chem Int Ed , 2001 . 40 ( 14 ): 2712 - 2715 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Mezzasalma L, Dove A P, Coulembier O. Eur Polym J , 2017 . 95 628 - 634 . DOI:10.1016/j.eurpolymj.2017.05.013http://doi.org/10.1016/j.eurpolymj.2017.05.013 .
Nachtergael A, Coulembier O, Dubois P, Helvenstein M, Duez P, Blankert B, Mespouille L. Biomacromolecules , 2015 . 16 ( 2 ): 507 - 514 . DOI:10.1021/bm5015443http://doi.org/10.1021/bm5015443 .
Dove A P, Pratt R C, Lohmeijer B G, Waymouth R M, Hedrick J L. J Am Chem Soc , 2005 . 127 ( 40 ): 13798 - 13799 . DOI:10.1021/ja0543346http://doi.org/10.1021/ja0543346 .
Coady D J, Kazuki F, Horn H W, Rice J E, Hedrick J L. Chem Commun , 2011 . 47 ( 11 ): 3105 - 3107 . DOI:10.1039/c0cc03987jhttp://doi.org/10.1039/c0cc03987j .
Rostami A, Sadeh E, Ahmadi S. J Polym Sci, Part A: Polym Chem , 2017 . 55 ( 15 ): 2483 - 2493 . DOI:10.1002/pola.v55.15http://doi.org/10.1002/pola.v55.15 .
Yarhosseini M, Javanshir S, Dekamin M G, Farhadnia M. Monatsh Chem , 2016 . 147 ( 10 ): 1779 - 1787 . DOI:10.1007/s00706-016-1666-1http://doi.org/10.1007/s00706-016-1666-1 .
Dekamin M G, Sagheb-Asl S, Reza Naimi-Jamal M. Tetrahedron Lett , 2009 . 50 ( 28 ): 4063 - 4066 . DOI:10.1016/j.tetlet.2009.04.090http://doi.org/10.1016/j.tetlet.2009.04.090 .
Pratt R C, Lohmeijer B G G, Long D A, Lundberg P N P, Dove A P, Li H B, Wade C G, Waymouth R M, Hedrick J L. Macromolecules , 2017 . 39 ( 23 ): 7863 - 7871.
Kan Z, Luo W, Shi T, Wei C, Han B, Zheng D, Liu S. Front Chem , 2018 . 6 547 - 563 . DOI:10.3389/fchem.2018.00547http://doi.org/10.3389/fchem.2018.00547 .
Pan X, Liu Z, Cheng R, Jin D, He X, Liu B. J Organomet Chem , 2014 . 753 63 - 71 . DOI:10.1016/j.jorganchem.2013.12.001http://doi.org/10.1016/j.jorganchem.2013.12.001 .
Properties Study of Thermoplastic Elastomers Prepared by Sequential Ring-opening Copolymerization of Bio-based δ-Caprolactone and L-lactide
Chemical Synthesis of Crystalline Biodegradable Polyhydroxyalkanoates
Synthesis and Ring-opening Polymerization of Benzoxy Substituted Oxa-lactones
Synthesis of Polyesters from Ring-opening (Co)polymerization by Aluminum Bipyridine Bisphenolate Complexes
Related Author
No data
Related Institution
Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology
State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
College of Chemical Engineering, Qingdao University of Science and Technology
Key Laboratory of Biobased Polymer Material, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology