Lin-xia Fu, Yi-yu Feng, Wei Feng. Photo-thermal Storage and Release of an Azobenzene-grafted Polynorbornene Film. [J]. Acta Polymerica Sinica 50(12):1272-1279(2019)
DOI:
Lin-xia Fu, Yi-yu Feng, Wei Feng. Photo-thermal Storage and Release of an Azobenzene-grafted Polynorbornene Film. [J]. Acta Polymerica Sinica 50(12):1272-1279(2019) DOI: 10.11777/j.issn1000-3304.2019.19092.
Photo-thermal Storage and Release of an Azobenzene-grafted Polynorbornene Film
The poor film-formation ability of azobenzene carbon thermal storage materials with graphene as templates limits their practical application due to the rigid structure of graphene sp2 hybridization. In this study
we addressed this issue by employing polynorbornene as the templelate given that polymers much outperform graphene in terms of film formation
flexibility
and self-supporting property. Herein
azobenzene attached with two methoxy and two carboxyl groups was firstly synthesized to regulate the photoisomerization and energy density. Next
polynorbornene (PNB) templates with various molecular weights were prepared by ring-opening metathesis polymerization (ROMP) with different molar ratios between monomer and catalyst. Azobenzene was then grafted onto the side chain of PNB through amidation reaction to afford azobenzene-grafted polynorbornenes with diverse grafting densities. Experimental results showed that with the increasing molecular weight of PNB template
the graft density of azobenzene rose first but subsequently fell. As for the film formation ability
PNB-Azo-500 with the highest graft density (36%) could hardly form an intact film
while PNB-Azo-900 exhibited the best film formation ability despite a slightly lower graft density (31%). Therefore
PNB-Azo-900 was involved in the following measurements. Tensile testing indicated that the PNB-Azo-900 film possessed good flexibility and self-supporting behavior by achieving a strain of 120% and a tensile strength of 21.5 MPa. Photoisomerization and energy density was characterized by UV-absorption spectroscopy and differential scanning calorimetry
respectively
which suggested that the film effectuated energy storage under 365 nm UV-light irradiation and the energy density reached 34 Wh/kg. The stored energy could be released as heat when the film was expoed to 550 nm green light or heat source stimulation
during which the highest temperature was 1.25 °C. Such excellent energy storage and light responsiveness endowed this PBN film with potential applications in the field of space thermal management.
Perez M, Perez R. IEA-SHCP-Newsletter , 2015 . 62 ( 11 ): 4 - 6.
Kucharski T J, Tian Y, Akbulatov S, Boulatov R. Energy Environ Sci , 2011 . 4 ( 11 ): 4449 - 4472 . DOI:10.1039/c1ee01861bhttp://doi.org/10.1039/c1ee01861b .
Davis S J, Caldeira K, Matthews H D. Science , 2010 . 329 ( 5997 ): 1330 - 1333 . DOI:10.1126/science.1188566http://doi.org/10.1126/science.1188566 .
Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S, Nocera D G. Chem Rev , 2010 . 110 ( 11 ): 6474 - 6502 . DOI:10.1021/cr100246chttp://doi.org/10.1021/cr100246c .
Wang Z, Tong Z, Ye Q, Hu H, Nie X, Yan C, Shang W, Song C, Wu J, Wang J, Bao H, Tao P, Deng T. Nat Commun , 2017 . 8 ( 1 ): 1478 - 1486 . DOI:10.1038/s41467-017-01618-whttp://doi.org/10.1038/s41467-017-01618-w .
Zhang Z, Liao M, Lou H, Hu Y, Sun X, Peng H. Adv Mater , 2018 . 30 ( 13 ): 1704261 - 1704279 . DOI:10.1002/adma.v30.13http://doi.org/10.1002/adma.v30.13 .
Zhitomirsky D, Cho E, Grossman J C. Adv Energy Mater , 2016 . 6 ( 6 ): 1501999 - 1502006.
Dreos A, Wang Z, Udmark J. Adv Energy Mater , 2018 . 8 ( 18 ): 1703401 - 1703409 . DOI:10.1002/aenm.v8.18http://doi.org/10.1002/aenm.v8.18 .
Kolpak A M, Grossman J C. Nano Lett , 2011 . 11 ( 8 ): 3156 - 3162 . DOI:10.1021/nl201357nhttp://doi.org/10.1021/nl201357n .
Zhao X, Feng Y, Qin C, Yang W, Si Q, Feng W. ChemSusChem , 2017 . 10 ( 7 ): 1395 - 1404 . DOI:10.1002/cssc.v10.7http://doi.org/10.1002/cssc.v10.7 .
Jonesii G, Reinhardt T E, Bergmark W R. Sol Energy , 1978 . 20 ( 3 ): 241 - 248 . DOI:10.1016/0038-092X(78)90103-2http://doi.org/10.1016/0038-092X(78)90103-2 .
Olmsted J, Lawrence J, Yee G G. Sol Energy , 1983 . 30 ( 3 ): 271 - 274 . DOI:10.1016/0038-092X(83)90156-1http://doi.org/10.1016/0038-092X(83)90156-1 .
Anders L, Anna R, Kasper M P. Tetrahedron Lett , 2015 . 56 ( 12 ): 1457 - 1465 . DOI:10.1016/j.tetlet.2015.01.187http://doi.org/10.1016/j.tetlet.2015.01.187 .
Kucharski T J, Ferralis N, Kolpak A M, Zheng J O, Nocera D G, Grossman J C. Nat Chem , 2014 . 6 ( 5 ): 441 - 447 . DOI:10.1038/nchem.1918http://doi.org/10.1038/nchem.1918 .
Feng Y, Liu H, Luo W, Liu E, Zhao N, Yoshino K, Feng W. Sci Rep , 2013 . 3 3260 - 3267 . DOI:10.1038/srep03260http://doi.org/10.1038/srep03260 .
Cho E N, Zhitomirsky D, Han G D, Liu Y, Grossman J C. ACS Appl Mater Interfaces , 2017 . 9 ( 10 ): 8679 - 8687 . DOI:10.1021/acsami.6b15018http://doi.org/10.1021/acsami.6b15018 .
Yang W, Feng Y, Si Q, Yan Q, Long P, Dong L, Feng W. J Mater Chem A , 2019 . 7 ( 1 ): 97 - 106 . DOI:10.1039/C8TA05333Bhttp://doi.org/10.1039/C8TA05333B .
Saydjari A K, Weis P, Wu S. Adv Energy Mater , 2017 . 7 ( 3 ): 1601619 - 1601622.
Han G D, Park S S, Liu Y, Zhitomirsky D, Cho E, Dincă M, Grossman J C. J Mater Chem A , 2016 . 4 ( 41 ): 16157 - 16165 . DOI:10.1039/C6TA07086Hhttp://doi.org/10.1039/C6TA07086H .