Heterophasic copolymerization of propylene based on MgCl
2
-supported Ziegler-Natta catalysts
that is
sequential propylene homopolymerization or copolymerization with minor amount of ethylene followed by ethylene/propylene random copolymerization for EPR
is a major polymerization technique in polypropylene industry
whose products
depending on their EPR contents
include high impact PP (h
i
PP
where EPR weight fraction is normally less than 40%) and thermophastic olefin elastomer (TPO
where EPR weight fraction is higher than 50 wt%). Compared to h
i
PP
the production of TPO is rather more challenging
for increased EPR contents makes it very difficult to prevent EPR from overflowing to the surfaces of the polymer particle
which will mess up with the particle morphology and lead to serious reactor fouling issues
affecting the production continuity. How to control the particle morphology at increased EPR contents with EPR being authentically contained inside without contaminating the surfaces has become a key scientific issue in further developing heterophasic copolymerization of propylene to TPO. This paper reports that the solution may lie in a simultaneous cross-linking of EPR using nonconjugated
α
ω
-diolefin during its polymerization. It is shown that simultaneous cross-linking can alter EPR’s viscoleastic properties to a great extent
exponentially increasing its low-shear viscosity and elasticity. As a result
EPR no longer poses as aggregated volatile droplets but rather large-size phase domains are formed by hot-compression; instead
it features dispersed particles discrete to each other. In turn
no overflowing of EPR occurs to the polymer particle surfaces. This research provides a solution for heterophasic copolymerization of propylene and polypropylene thermoplastic elastomer with high EPR content.
关键词
丙烯多相共聚Ziegler-Natta催化剂聚丙烯热塑性弹性体非共轭αω-双烯烃粒子形态控制
Keywords
Heterophasic propylene copolymerizationZiegler-Natta catalystPolypropylene thermoplastic elastomerNonconjugated αω-diolefinParticle morphology control
references
Hotta A, Cochran E, Ruokolainen J, Khanna V, Fredrickson G H, Kramer E J, Shin Y W, Shimizu F, Cherian A E, Hustad P D, Rose J M, Coates G W. PNAS , 2006 . 103 ( 42 ): 15327 - 15332 . DOI:10.1073/pnas.0602894103http://doi.org/10.1073/pnas.0602894103 .
Hustad P D. Science , 2009 . 325 704 - 707 . DOI:10.1126/science.1174927http://doi.org/10.1126/science.1174927 .
O’Connor K S, Watts A, Vaidya T, LaPointe A M, Hillmyer M A, Coates G W. Macromolecules , 2016 . 49 6743 - 6751 . DOI:10.1021/acs.macromol.6b01567http://doi.org/10.1021/acs.macromol.6b01567 .
Zhang K, Liu P, Wang W J, Li B G, Liu W, Zhu S P. Macromolecules , 2018 . 51 8790 - 8799 . DOI:10.1021/acs.macromol.8b01711http://doi.org/10.1021/acs.macromol.8b01711 .
Chen T, Chen C L. Angew Chem Int Ed , 2019 . 58 7192 - 7200 . DOI:10.1002/anie.201814634http://doi.org/10.1002/anie.201814634 .
Lian K B, Zhu Y, Li W M, Dai S Y, Chen C L. Macromolecules , 2017 . 50 6074 - 6080 . DOI:10.1021/acs.macromol.7b01087http://doi.org/10.1021/acs.macromol.7b01087 .
Wang F Z, Chen C L. Polym Chem , 2019 . 10 2354 - 2369 . DOI:10.1039/C9PY00226Jhttp://doi.org/10.1039/C9PY00226J .
Tong Z Z, Zhou B, Huang J, Xu J T, Fan Z Q. Macromolecules , 2014 . 47 333 - 346 . DOI:10.1021/ma4023263http://doi.org/10.1021/ma4023263 .
Arriola D J, Carnahan E M, Hustad P D, Kuhlman R L, Wenzel T T. Science , 2006 . 312 714 - 719 . DOI:10.1126/science.1125268http://doi.org/10.1126/science.1125268 .
Hustad P D, Kuhlman R L, Arriola D J, Carnahan E M, Wenzel T T. Macromolecules , 2007 . 40 7061 - 7066 . DOI:10.1021/ma0717791http://doi.org/10.1021/ma0717791 .
Gahleitner M, Tranninger C, Doshev P. J Appl Polym Sci , 2013 . 130 3028 - 3037 . DOI:10.1002/app.39626http://doi.org/10.1002/app.39626 .
McKenna T F, Bouzid D, Matsunami S, Sugano T. Polym React Eng , 2003 . 11 ( 2 ): 177 - 197 . DOI:10.1081/PRE-120021074http://doi.org/10.1081/PRE-120021074 .
Gessler A M, Haslett W H. US patent, US3037954. 1962-08-11
Fischer W. US patent, US RE30405 E. 1980-01-02
Fischer W. US patent, US 3835201. 1974-03-05
Coran A Y, Das B, Patel R P. US patent, US 4130535. 1978-02-12
Coran A Y, Patel R. US patent, US 4355139. 1982-12-21
Lu L, Niu H, Dong J Y, Zhao X T, Hu X T. J Appl Polym Sci , 2010 . 118 ( 6 ): 3218 - 3226 . DOI:10.1002/app.32553http://doi.org/10.1002/app.32553 .
Shi J J, Dong J Y. Polymer , 2016 . 85 10 - 18 . DOI:10.1016/j.polymer.2016.01.024http://doi.org/10.1016/j.polymer.2016.01.024 .
Zhou Y, Niu H, Kong L, Zhao Y, Dong J Y, Wang D J. Polymer , 2009 . 50 4690 - 4695 . DOI:10.1016/j.polymer.2009.07.042http://doi.org/10.1016/j.polymer.2009.07.042 .
Flowability of Ethylene-Propylene Copolymer in Situ-regulated by Long-chain Nonconjugated α,ω-Diolefin
Synthesis of Long Chain-branched Polypropylene Based on Dichlorosilane-functionalized Nonconjugated α,ω-Diolefin and Ziegler-Natta Catalyst
Synthesis of Long-chain-branched High-density Polyethylene with Ziegler-Natta Catalyst and ω-Alkenylmethyldichlorosilane Copolymerization-Hydrolysis Chemistry
Ethylene/Isoprene Copolymerization with Supported Ziegler-Natta Catalyst Containing Internal Electron Donor
Controlling Phase Morphology of EPR in Polypropylene Heterophasic Copolymer by Dichlorosilane-Functionalized Nonconjugated α,ω-Diolefin
Related Author
No data
Related Institution
Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Acadamy of Sciences
University of Chinese Acadamy of Sciences
Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Acadamy of Sciences
Shaanxi Yanchang Zhongmei Yulin Energy & Chemical Company
CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Acadamy of Sciences