Vanadium catalysts always show outstanding catalytic properties towards ethylene (co)polymeriztaion
while the high-valent vanadium species would be deactivated because of the generation of inactive or less active low-valent species at elevated temperature and/or in prolonged time. As proved
introducing of bulky groups into the ligands is benefit to improving the catalytic properties of vanadium complexes. Herein
in order to well control the oxidation state of vanadium species
a series of tridentate
β
-ketoimine type vanadium(III) complexes bearing cyclic skeleton {[(R)X(C
6
H
4
)N=CH(C
6
H
5
)C
10
H
7
O]VCl
2
(THF):
2a
R = CH
3
X = S;
2b
R = CF
3
X = S;
2c
R = Ph
X = S;
2d
R =
t
Bu
X = S;
2e
R = Ph
2
X = P;
2f
R = Ph
X = O}
were synthesized and characterized. Because of the constrained effects of the cyclic skeleton and the stabilizing effects of the bi-chelating ring
these synthesized catalysts showed high activities and improved stabilities in ethylene (co)polymerization. In the presences of Et
2
AlCl and ethyl trichloroacetate
catalysts
2a
−
2f
showed 8.16 − 19.9 kg
polymer
/(mmol
V
·h)
7.68 − 26.9 kg
polymer
/(mmol
V
·h) and 4.80 − 42.2 kg
polymer
/(mmol
V
·h) of catalytic activities towards ethylene polymerization
ethylene/norbornene (NBE) copolymerization and ethylene/exo-1
4
4a
9
9a
10-hexahy-dro-9
10(1′
2′)-benzeno-1
4-methanoanthracene (HBM) copolymerization
respectively. All of the resultant polymers exhibited a unimodal distribution
indicating that these vanadium catalysts showed single-site catalytic behaviour
even at elevated temperatures (50 − 70 °C). Catalysts
2b
2d
2e
and
2f
showed “positive” comonomer effects in both ethylene/NBE copolymerization and ethylene/HBM copolymerization. Besides
2a
and
2c
also exhibited “positive” comonomer effects in ethylene/HBM copolymerization. Cyclic olefin copolymers possessing high molecular weights (NBE: 43.1 − 66.4 kg/mol; HBM: 90.2 − 138 kg/mol) and high comonomer incorporations (NBE: 30.9 mol% − 42.1 mol%; HBM: 14.7 mol% − 25.0 mol%) were obtained facilely
via
direct copolymerization. The glass transition temperature is dominantly affected by the cyclic olefin incorporations and the steric hindrance of the cyclic olefin. Compared with the ethylene/NBE copolymers
the obtained ethylene/HBM copolymers showed much higher glass transition temperatures (NBE: 84 − 105 °C versus HBM: 173 − 188 °C).
Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S. ChemCatChem , 2019 . 11 2329 - 2340 . DOI:10.1002/cctc.v11.9http://doi.org/10.1002/cctc.v11.9 .
Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S. ACS Catal , 2018 . 8 5963 - 5976 . DOI:10.1021/acscatal.8b01088http://doi.org/10.1021/acscatal.8b01088 .
Fang J, Sui X L, Li Y G, Chen C L. Polym Chem , 2018 . 9 4143 - 4149 . DOI:10.1039/C8PY00725Jhttp://doi.org/10.1039/C8PY00725J .
Zhang Y R, Yang J X, Pan L, Li Y S. Chinese J Polym Sci , 2018 . 36 214 - 221.
Guo L, Zhang Y P, Mu H L, Pan L, Wang K T, Gao H, Wang B, Ma Z, Li Y S. Chinese J Polym Sci , 2019 . 37 1 - 9 . DOI:10.1007/s10118-019-2189-0http://doi.org/10.1007/s10118-019-2189-0 .
Hagen H, Boersma J, Koten G V. Chem Soc Rev , 2002 . 31 357 - 364 . DOI:10.1039/B205238Ehttp://doi.org/10.1039/B205238E .
Wu J Q, Li Y S. Coord Chem Rev , 2011 . 255 2303 DOI:10.1016/j.ccr.2011.01.048http://doi.org/10.1016/j.ccr.2011.01.048 .
Christman D L, Keim G I. Macromolecules , 1968 . 1 358 DOI:10.1021/ma60004a017http://doi.org/10.1021/ma60004a017 .
Ma Y L, Reardon D, Gambarotta S, Yap G, Zahalka H, Lemay C. Organometallics , 1999 . 18 2773 - 2781 . DOI:10.1021/om9808763http://doi.org/10.1021/om9808763 .
Zhang S, Zhang W C, Shang D D, Zhang Z Q, Wu Y X. Dalton Trans , 2015 . 44 15264 - 15270 . DOI:10.1039/C5DT00675Ahttp://doi.org/10.1039/C5DT00675A .
Hao X F, Zhang C d, Li L, Zhang H X, Hu Y M, Hao D F, Zhang X Q. Polymers , 2017 . 9 325 DOI:10.3390/polym9080325http://doi.org/10.3390/polym9080325 .
Zhang S, Zhang W C, Shang D D, Wu Y X. J Polym Sci, Part A: Polym Chem , 2019 . 57 553 - 561 . DOI:10.1002/pola.v57.4http://doi.org/10.1002/pola.v57.4 .
Adisson E, Deffieux A, Fontanille M. J Polym Sci, Part A: Polym Chem , 1993 . 31 831 - 839.
Wu J Q, Pan L, Li Y G, Liu S R, Li Y S. Organometallics , 2009 . 28 1817 - 1825 . DOI:10.1021/om801028ghttp://doi.org/10.1021/om801028g .
Lu L P, Wang J B, Liu J Y, Li Y S. J Polym Sci, Part A: Polym Chem , 2014 . 52 2633 - 2642 . DOI:10.1002/pola.v52.18http://doi.org/10.1002/pola.v52.18 .
Wang J B, Lu L P, Liu J Y, Li Y S. Dalton Trans , 2014 . 43 12926 - 12934 . DOI:10.1039/C4DT01166Jhttp://doi.org/10.1039/C4DT01166J .
Wang K T, Wang Y X, Wang B, Li Y G, Li Y S. Chinese J Polym Sci , 2017 . 35 1110 - 1121 . DOI:10.1007/s10118-017-1956-zhttp://doi.org/10.1007/s10118-017-1956-z .
Redshaw C, Warford L, Dale S H, Elsegood M R. Chem Commun , 2004 . 1954 - 1955.
Lorber C, Despagnet-Ayoub E, Vendier L, Arbaoui A, Redshaw C. Catal Sci Technol , 2011 . 1 489 - 494 . DOI:10.1039/c1cy00089fhttp://doi.org/10.1039/c1cy00089f .
Redshaw C, Walton M J, Lee D S, Jiang C, Elsegood M R, Michiue K. Chem Eur J , 2015 . 21 5199 - 5210 . DOI:10.1002/chem.201406084http://doi.org/10.1002/chem.201406084 .
Redshaw C, Walton M, Michiue K, Chao Y, Walton A, Elo P, Sumerin V, Jiang C, Elsegood M R. Dalton Trans , 2015 . 44 12292 - 12303 . DOI:10.1039/C5DT00376Hhttp://doi.org/10.1039/C5DT00376H .
Zhang S, Nomura K. J Am Chem Soc , 2010 . 132 4960 - 4965 . DOI:10.1021/ja100573dhttp://doi.org/10.1021/ja100573d .
Igarashi A, Zhang S, Nomura K. Organometallics , 2012 . 31 3575 - 3581 . DOI:10.1021/om3000532http://doi.org/10.1021/om3000532 .
Tang X Y, Igarashi A, Sun W H, Inagaki A, Liu J Y, Zhang W J, Li Y S, Nomura K. Organometallics , 2014 . 33 1053 - 1060 . DOI:10.1021/om401119yhttp://doi.org/10.1021/om401119y .
Liu Y, Xiang H X, Wang K T, Wu G, Li Y B. Macromol Chem Phys , 2019 . 220 1900008 DOI:10.1002/macp.v220.9http://doi.org/10.1002/macp.v220.9 .
Kakiuchi F, Matsuura Y, Kan S, Chatani N. J Am Chem Soc , 2005 . 127 5936 - 5945 . DOI:10.1021/ja043334nhttp://doi.org/10.1021/ja043334n .
Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N, Murai S. Bull Chem Soc Jpn , 1995 . 68 62 - 83 . DOI:10.1246/bcsj.68.62http://doi.org/10.1246/bcsj.68.62 .
Dai X D, Wong A, Virgil S C. J Org Chem , 1998 . 63 2597 - 2600 . DOI:10.1021/jo972105zhttp://doi.org/10.1021/jo972105z .
Hong M, Cui L, Liu S R, Li Y S. Macromolecules , 2012 . 45 5397 - 5402 . DOI:10.1021/ma300730yhttp://doi.org/10.1021/ma300730y .
Lu L P, Suo F Z, Feng Y L, Song L L, Li Y, Li Y J, Wang K T. Eur J Med Chem , 2019 . 176 1 - 10 . DOI:10.1016/j.ejmech.2019.04.073http://doi.org/10.1016/j.ejmech.2019.04.073 .
Tang X Y, Wang Y X, Li B X, Liu J Y, Li Y S. J Polym Sci, Part A: Polym Chem , 2013 . 51 1585 - 1594 . DOI:10.1002/pola.26528http://doi.org/10.1002/pola.26528 .
Synthesis of Pyrene Based α-Diimide Nickel Catalysts for Ethylene Polymerization/Copolymerization
Iron Complex Catalysts in Ethylene Reactivity: from Concept to Commercialization
Study on Multi-factor Coupling Aging Kinetics of Polyolefins: Yearly and Monthly Aging Speed Maps
Study on the Relationship between the Orientation Structure of Linear Low-density Polyethylene Cast Film and Barrier Properties
Related Author
No data
Related Institution
Department of Polymer Science and Engineering, University of Science and Technology of China
Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences
Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology
Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences
Department of Chemical Engineering, Tsinghua University