Yan Peng, Yu-jia Hou, Qiao-qiao Shen, Hui Wang, Gang Li, Guang-su Huang, Jin-rong Wu. Synthesis and Performance of a Double Network Self-healing Elastomer Based on Hydrogen Bonds and Diels-Alder Crosslinks. [J]. Acta Polymerica Sinica 51(2):158-165(2020)
DOI:
Yan Peng, Yu-jia Hou, Qiao-qiao Shen, Hui Wang, Gang Li, Guang-su Huang, Jin-rong Wu. Synthesis and Performance of a Double Network Self-healing Elastomer Based on Hydrogen Bonds and Diels-Alder Crosslinks. [J]. Acta Polymerica Sinica 51(2):158-165(2020) DOI: 10.11777/j.issn1000-3304.2019.19140.
Synthesis and Performance of a Double Network Self-healing Elastomer Based on Hydrogen Bonds and Diels-Alder Crosslinks
which can automatically heal themselves after damage without the addition of other reagents
have recently attracted increasing attention. However
a trade-off commonly exists between high mechanical properties and high self-healing efficiency
which is always the bottle-neck in advancing these high performance self-healing elastomers. To solve this problem
a high performance and high self-healing efficiency elastomer was developed in this work based on hydrogen bonds and Diles-Alder (DA) crosslinks. Firstly
a monomer (HM) functionalized with amido bond and carbamic acid ester for the generation of hydrogen bonds was synthesized by
N
-butyl isocyanate and
N
-(2-hydroxyethyl)acrylamide. Next
one-pot free-radical copolymerization of HM
butyl acrylate (BA)
and furfuryl methacrylate (FMA) was carried out to afford a linear copolymer
which was only cross-linked with hydrogen bonds. Finally
bismaleimide (BMI) was used to crosslink the linear copolymer through DA reaction. A double network self-healing elastomer with two kinds of crosslinks
i.e.
hydrogen bonds and DA bonds
was thus prepared. The heating-up and cooling down FTIR spectroscopy was used to characterize the hydrogen bonds
while the existence of DA bonds was proved by FTIR
DSC
and DMA techniques. When an external force was applied
the hydrogen bonds broke firstly to dissipate energy
which helped to increase the toughness by about 6.2 times
the tensile strength by about 12.3 times
and Young’s modulus of the elastomer by about 26 times. Meanwhile
DA crosslinks endowed the elastomer with certain elasticity and the capability of fast shape recovery. Moreover
thanks to the reversible ability of hydrogen bonds and DA crosslinks
the elastomer exhibited a high self-healing efficiency up to 98%.
Montarnal D, Tournilhac F, Hidalgo M, Couturier J L, Leibler L. J Am Chem Soc , 2009 . 131 7966 - 7967 . DOI:10.1021/ja903080chttp://doi.org/10.1021/ja903080c .
Sun T L, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat Mater , 2013 . 12 932 - 937 . DOI:10.1038/nmat3713http://doi.org/10.1038/nmat3713 .
van Gemert G M L, Peeters J W, Sontjens S H M, Janssen H M, Bosman A W. Macromol Chem Phys , 2012 . 213 234 - 242 . DOI:10.1002/macp.201100559http://doi.org/10.1002/macp.201100559 .
Das A, Sallat A, Boehme F, Suckow M, Basu D, Wiessner S, Stoeckelhuber K W, Voit B, Heinrich G. ACS Appl Mater Interfaces , 2015 . 7 20623 - 20630 . DOI:10.1021/acsami.5b05041http://doi.org/10.1021/acsami.5b05041 .
Wang D, Guo J, Zhang H, Cheng B, Shen H, Zhao N, Xu J. J Mater Chem A , 2015 . 3 12864 - 12872 . DOI:10.1039/C5TA01915Jhttp://doi.org/10.1039/C5TA01915J .
Burnworth M, Tang L, Kumpfer J R, Duncan A J, Beyer F L, Fiore G L, Rowan S J, Weder C. Nature , 2011 . 472 334 - 337 . DOI:10.1038/nature09963http://doi.org/10.1038/nature09963 .
Wang Z, Yang Y, Burtovyy R, Luzinov I, Urban M W. J Mater Chem A , 2014 . 2 15527 - 15534 . DOI:10.1039/C4TA02417Fhttp://doi.org/10.1039/C4TA02417F .
Fox J, Wie J J, Greenland B W, Burattini S, Hayes W, Colquhoun H M, Mackay M E, Rowan S J. J Am Chem Soc , 2012 . 134 5362 - 5368 . DOI:10.1021/ja300050xhttp://doi.org/10.1021/ja300050x .
Burattini S, Colquhoun H M, Fox J D, Friedmann D, Greenland B W, Harris P J F, Hayes W, Mackay M E, Rowan S J. Chem Commun , 2009 . 44 6717 - 6719.
Tao Jie(陶杰), Lin Cuiling(林翠玲), Wang Zhaolong(王兆龙), Wei Bin(魏斌), Hua Qixia(华奇侠), Wan Xueting(万雪婷), Qiu Huayu(邱化玉), Yin Shouchun(尹守春). Acta Polymerica Sinica(高分子学报) , 2017 . ( 1 ): 93 - 100 . DOI:10.11777/j.issn1000-3304.2017.16244http://doi.org/10.11777/j.issn1000-3304.2017.16244 .
Froidevaux V, Borne M, Laborbe E, Auvergne R, Gandini A, Boutevin B. RSC Adv , 2015 . 5 37742 - 37754 . DOI:10.1039/C5RA01185Jhttp://doi.org/10.1039/C5RA01185J .
Bai N, Simon G P, Saito K. New J Chem , 2015 . 39 3497 - 3506 . DOI:10.1039/C5NJ00066Ahttp://doi.org/10.1039/C5NJ00066A .
Deng G, Tang C, Li F, Jiang H, Chen Y. Macromolecules , 2010 . 43 1191 - 1194 . DOI:10.1021/ma9022197http://doi.org/10.1021/ma9022197 .
Kim S M, Jeon H, Shin S H, Park S A, Jegal J, Hwang S Y, Oh D X, Park J. Adv Mater , 2018 . 30 1705145 DOI:10.1002/adma.201705145http://doi.org/10.1002/adma.201705145 .
Sastri V R, Tesoro G C. J Appl Polym Sci , 2010 . 39 1439 - 1457.
Yuan C E, Rong M Z, Zhang M Q, Zhang Z P, Yuan Y C. Chem Mater , 2011 . 23 5076 - 5081 . DOI:10.1021/cm202635whttp://doi.org/10.1021/cm202635w .
Peng Y, Yang Y, Wu Q, Wang S X, Huang G S, Wu J R. Polymer , 2018 . 157 172 - 179 . DOI:10.1016/j.polymer.2018.09.038http://doi.org/10.1016/j.polymer.2018.09.038 .
Wu J, Cai L H, Weitz D A. Adv Mater , 2017 . 29 1702616 DOI:10.1002/adma.201702616http://doi.org/10.1002/adma.201702616 .
Wei Z, He J, Liang T, Oh H, Athas J, Tong Z, Wang C, Nie Z. Polym Chem , 2013 . 4 4601 - 4605 . DOI:10.1039/c3py00692ahttp://doi.org/10.1039/c3py00692a .
Glassy Hydrogels: From New State to High Performances of Gel Materials
Hydrogen-bonded Supramolecular Polymeric Materials: From Structure and Performance to Functionality and Application
Mechanical Properties and Mullins Effect of Ethylene Propylene Diene Monomer Vulcanizes Reinforced with Silica Powders with Different Micropore Structures
Strong and Tough Chitosan Aerogels via Hofmeister Effect
Progress on Intrinsically Flame-retardant Bio-based Epoxy Thermosets
Related Author
No data
Related Institution
Department of Polymer Science and Engineering, Zhejiang University
College of Materials Science and Engineering, Qingdao University
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University
College of Materials Science & Engineering, Taiyuan University of Technology
Zheda Institute of Advanced Materials and Chemical Engineering