Gel polymer electrolytes (GPEs) for lithium ion batteries (LIBs) have attracted great attention due to their high ionic conductivity and safety
but it is still a great challenge to develop GPEs which can be used at high temperature in specific applications
such as oil drilling
mining
military and aerospace electronics. Cross-linking is one of the efficient methods for enhancing the thermal stabilities of GPEs. In this work
crosslinked gel polymer electrolytes (e-CGPEs) were made by electrospinning and Friedel-Crafts alkylation reaction. First of all
electrospun polymer membranes (e-PMs) were prepared by electrospinning technique with poly(vinylidene fluoride) (PVDF) as the matrix and polystyrene-
b
-poly(ethylene oxide)-
b
-polystyrene (PS-PEO-PS) triblock copolymer as the additive. Then the styrene units in e-PMs were crosslinked by Friedel-Crafts alkylation reaction to give electrospun crosslinked polymer membranes (e-CPMs). e-CPMs were activated by absorbing electrolytes to give crosslinked gel polymer electrolytes (e-CGPEs). The effects of PS-PEO-PS content (3%
5%
10%
20%) on the properties of e-CPMs and e-CGPEs were also discussed. The results show that the content of PS-PEO-PS can affect the crystallinity
electrolyte uptake and crosslinked degree of e-CPMs
which may have influences on the ionic conductivity. Owing to the abundant crosslinked networks
high-temperature dimensional stabilities of e-CPMs are much better than that of electrospun PVDF membrane and commercial polypropylene (PP) membrane. All e-CPMs show almost no dimensional shrinkage at 160 °C
indicating that e-CPMs can be efficient precursors of GPEs used at high temperature. e-CGPEs have better electrochemical performances than the PVDF-based GPE (e-PVDF)
due to their high porosity
electrolyte uptake and ionic conductivity. Among all the e-CGPEs
e-CGPE 5% with proper PS-PEO-PS content and crosslinked degree possesses the highest ionic conductivity of 6.52 mS/cm at room temperature. The half-cell assembled by e-CGPE 5% shows a discharge specific capacity of 83.5 mAh/g at 2 C. e-CGPEs also exhibit excellent cycle and rate performances. e-CGPE 5% has a capacity retention of 99.7% after 100 cycles at 0.1 C. All the results suggest that e-CGPEs have potential application value in high-efficiency lithium ion batteries which could be used at high temperature. And this work also provides a new path for the preparation of crosslinked gel polymer electrolytes with high efficiency and good performance.
关键词
静电纺丝傅-克烷基化反应锂离子电池凝胶聚合物电解质交联网络
Keywords
ElectrospinningFriedel-Crafts alkylation reactionLithium ion batteryGel polymer electrolyteCrosslinked networks
references
Tarascon J M, Armand M. Nature , 2001 . 414 359 - 367 . DOI:10.1038/35104644http://doi.org/10.1038/35104644 .
Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Energy Storage Mater , 2018 . 10 246 - 267 . DOI:10.1016/j.ensm.2017.05.013http://doi.org/10.1016/j.ensm.2017.05.013 .
Long L, Wang S, Xiao M, Meng Y. J. Mater Chem A , 2016 . 4 10038 - 10069 . DOI:10.1039/C6TA02621Dhttp://doi.org/10.1039/C6TA02621D .
Di Noto V, Lavina S, Giffin G A, Negro E. Scrosati B. Electrochim Acta , 2011 . 57 4 - 13 . DOI:10.1016/j.electacta.2011.08.048http://doi.org/10.1016/j.electacta.2011.08.048 .
Agrawal R C, Pandey G P. J Phys D: Appl Phys , 2008 . 41 223001 DOI:10.1088/0022-3727/41/22/223001http://doi.org/10.1088/0022-3727/41/22/223001 .
Liang S, Yan W, Wu X, Zhang Y, Zhu Y, Wang H, Wu Y. Solid State Ion , 2018 . 318 2 - 18 . DOI:10.1016/j.ssi.2017.12.023http://doi.org/10.1016/j.ssi.2017.12.023 .
Cheng X L, Pan J, Zhao Y, Liao M, Peng H S. Adv Energy Mater , 2018 . 8 1702184 DOI:10.1002/aenm.201702184http://doi.org/10.1002/aenm.201702184 .
Ma X, Zuo X, Wu J, Deng X, Xiao X, Liu J, Nan J. J Mater Chem A , 2018 . 6 1496 - 1503 . DOI:10.1039/C7TA08741Ahttp://doi.org/10.1039/C7TA08741A .
Devaux D, Glé D, Phan T N T, Gigmes D, Giroud E, Deschamps M, Denoyel R, Bouchet R. Chem Mater , 2015 . 27 4682 - 4692 . DOI:10.1021/acs.chemmater.5b01273http://doi.org/10.1021/acs.chemmater.5b01273 .
Lu Q, He Y B, Yu Q, Li B, Kaneti Y V, Yao Y, Kang F, Yang Q H. Adv Mater , 2017 . 29 1604460 DOI:10.1002/adma.201604460http://doi.org/10.1002/adma.201604460 .
Shin W K, Yoo J H, Choi W, Chung K Y, Jang S S, Kim D W. J Mater Chem A , 2015 . 3 12101 - 12560 . DOI:10.1039/C5TA90123Ehttp://doi.org/10.1039/C5TA90123E .
Wang Y M, Qiu J Y, Peng J, Li J Q, Zhai M L. J Mater Chem A , 2017 . 5 12393 - 12399 . DOI:10.1039/C7TA02291Chttp://doi.org/10.1039/C7TA02291C .
Tan L, Tan B. Chem Soc Rev , 2017 . 46 3322 - 3356 . DOI:10.1039/C6CS00851Hhttp://doi.org/10.1039/C6CS00851H .
Luo Y, Li B, Wang W, Wu K, Tan B. Adv Mater , 2012 . 24 5703 DOI:10.1002/adma.201202447http://doi.org/10.1002/adma.201202447 .
Xiao Q, Deng C, Wang Q, Zhang Q, Yue Y, Ren S. ACS Omega , 2019 . 4 95 - 103 . DOI:10.1021/acsomega.8b02255http://doi.org/10.1021/acsomega.8b02255 .
Beaudoin E, Phan T N, Robinet M, Denoyel R, Davidson P, Bertin D, Bouchet R. Langmuir , 2013 . 29 10874 - 10880 . DOI:10.1021/la401889hhttp://doi.org/10.1021/la401889h .
Choi S W, Jo S M, Lee W S, Kim Y R. Adv Mater , 2003 . 15 2027 - 2032 . DOI:10.1002/adma.200304617http://doi.org/10.1002/adma.200304617 .
Hu L, Tang Z, Zhang Z. J Power Sources , 2007 . 166 226 - 232 . DOI:10.1016/j.jpowsour.2007.01.028http://doi.org/10.1016/j.jpowsour.2007.01.028 .
Design and Characterization of High Performance Electrospun Separator for Lithium Ion Battery
THE EFFECTS OF in situ GENERATED TITANIUM DIOXIDE ON THE MECHANICAL AND ELECTROCHEMICAL PROPERTIES OF ELECTROSPUN POLYVINYLIDENE FLUORIDE SEPERATOR FOR LITHIUM-ION BATTERY
Regulated Ion Transport Dynamics and Electrochemical Applications of Nanofiber Composites
Safety Protection Measures for Lithium Ion Batteries: An Overview and Outlook
Advances of High-voltage Cathode Binders for Lithium Ion Batteries
Related Author
No data
Related Institution
University of Chinese Academy of Sciences
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136
Chemical Engineering Institute, Dalian University of Technology
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University