Chun-yang Yu, Shan-long Li, Ke Li, Yong-feng Zhou. Investigation of the Transformation Dynamics of Diblock Copolymers Assemblies in Reverse Solvent via Computer Simulation. [J]. Acta Polymerica Sinica 51(3):311-318(2020)
DOI:
Chun-yang Yu, Shan-long Li, Ke Li, Yong-feng Zhou. Investigation of the Transformation Dynamics of Diblock Copolymers Assemblies in Reverse Solvent via Computer Simulation. [J]. Acta Polymerica Sinica 51(3):311-318(2020) DOI: 10.11777/j.issn1000-3304.2019.19173.
Investigation of the Transformation Dynamics of Diblock Copolymers Assemblies in Reverse Solvent via Computer Simulation
It has become a very mature and effective method to construct complex nanostructures by the self-assembly of amphiphilic block copolymer in solution or in bulk. A large number of studies have been reported that the assembly morphology of amphiphilic block copolymer can be accurately controlled by adjusting the block ratio
concentration
block compatibility and solvent conditions. Meanwhile
compared with the solution self-assembly method
the combination of substrate restriction and solvent annealing provides another way for the construction and regulation of complex nanostructures. However
due to the limitations of experimental methods
two basic problems have not been resolved. The first one is that
after the solvent selectivity was changed
the structural transformation dynamics of micelle were not clear. The second one is that
the current studies are only limited to the structural transformation process of spherical micelles in different solvents
the structural evolution kinetics of other shaped micelles or vesicles in the reverse solvent or at interface have not been reported. Thus
it is necessary to address these issues through computer simulation. In this paper
the transformation dynamics of diblock copolymers assemblies in reverse selective solvent were disclosed using dissipative particle dynamics simulation. Simulation results show that after the change of solvent selectivity
the large spherical micelles were respectively transformed into the reverse spherical micelle in solution and the ring-like micelle at the interface. The simulation results were in agreement with the available experimental result. In addition
the simulation results also predicted that after the change of solvent selectivity
the ring-like micelle
the wormlike micelle and the vesicle were transformed into the reverse ring-like micelle
the reverse ring-like micelle and multimicelle aggregate in solution
respectively
while they were transformed into the branched wormlike micelle
the multilayer nanoparticle and the patch nanoparticle at the interface
respectively. The current work provide important guidance for the design and preparation of novel nanostructures.
Thomas E L, Anderson D M, Henkee C S, Hoffman D. Nature , 1988 . 334 ( 6183 ): 598 - 601 . DOI:10.1038/334598a0http://doi.org/10.1038/334598a0 .
Bates F S. Science , 1991 . 251 ( 4996 ): 898 - 905 . DOI:10.1126/science.251.4996.898http://doi.org/10.1126/science.251.4996.898 .
Bates F S, Fredrickson G H. Phys Today , 1999 . 52 ( 40 ): 32 - 38.
van Hest J C M, Delnoye D A P, Baars M W P L, van Genderen M H P, Meijer E W. Science , 1995 . 268 ( 5217 ): 1592 -1595 . DOI:10.1126/science.268.5217.1592http://doi.org/10.1126/science.268.5217.1592 .
Lin Z X, Liu S H, Mao W T, Tian H, Wang N, Zhang N H, Tian F, Han L, Feng X L, Mai Y Y. Angew Chem Int Ed , 2017 . 56 ( 25 ): 7135 - 7140 . DOI:10.1002/anie.201702591http://doi.org/10.1002/anie.201702591 .
Rösler A, Vandermeulen G W, Klok H A. Adv Drug Deliv Rev , 2001 . 53 ( 1 ): 95 - 108 . DOI:10.1016/S0169-409X(01)00222-8http://doi.org/10.1016/S0169-409X(01)00222-8 .
O’Reilly R K, Hawker C J, Wooley K L. Chem Soc Rev , 2006 . 35 ( 11 ): 1068 - 1083 . DOI:10.1039/b514858hhttp://doi.org/10.1039/b514858h .
Wei H, Cheng S X, Zhang X Z, Zhuo R X. Prog Polym Sci , 2009 . 34 ( 9 ): 893 - 910 . DOI:10.1016/j.progpolymsci.2009.05.002http://doi.org/10.1016/j.progpolymsci.2009.05.002 .
Roy D, Brooks W L, Sumerlin B S. Chem Soc Rev , 2013 . 42 ( 17 ): 7214 - 7243 . DOI:10.1039/c3cs35499ghttp://doi.org/10.1039/c3cs35499g .
Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules , 2013 . 47 ( 1 ): 2 - 12.
Li W, Muller M. Annu Rev Chem Biomol , 2015 . 6 ( 1 ): 187 - 216 . DOI:10.1146/annurev-chembioeng-061114-123209http://doi.org/10.1146/annurev-chembioeng-061114-123209 .
Schulze M W, McIntosh L D, Hillmyer M A, Lodge T P. Nano Lett , 2013 . 14 ( 1 ): 122 - 126.
Kennemur J G, Hillmyer M A, Bates F S. Macromolecules , 2012 . 45 ( 17 ): 7228 - 7236 . DOI:10.1021/ma301047yhttp://doi.org/10.1021/ma301047y .
Keen I, Yu A, Cheng H H, Jack K S, Nicholson T M, Whittaker A K, Blakey I. Langmuir , 2012 . 28 ( 24 ): 15876 - 15888.
O’Driscoll S M, O’Mahony C T, Farrell R A, Fitzgerald T G, Holmes J D, Morris M A. Chem Phys Lett , 2009 . 476 ( 1−3 ): 65 - 68.
Chen Z, He C, Li F, Tong L, Liao X, Wang Y. Langmuir , 2010 . 26 ( 11 ): 8869 - 8874 . DOI:10.1021/la904623ehttp://doi.org/10.1021/la904623e .
Xue F, Li H, An L, Jiang S. J Colloid Interface Sci , 2013 . 399 ( 1 ): 62 - 67.
Zhu H, Wang X, Cui Y, Cai J, Tian F, Wang J, Qiu H. Macromolecules , 2019 . 52 ( 9 ): 3479 - 3485 . DOI:10.1021/acs.macromol.9b00197http://doi.org/10.1021/acs.macromol.9b00197 .
Groot R D, Madden T J. J Chem Phys , 1998 . 108 ( 20 ): 8713 - 8724 . DOI:10.1063/1.476300http://doi.org/10.1063/1.476300 .
Liu Y T, Zhao Y, Liu H, Liu Y H, Lu Z Y. J Phys Chem B , 2009 . 113 ( 46 ): 15256 - 15262 . DOI:10.1021/jp903570whttp://doi.org/10.1021/jp903570w .
Sheng Y J, Wang T Z, Chen W M, Tsao H K. J Phys Chem B , 2007 . 111 ( 37 ): 10938 - 10945 . DOI:10.1021/jp073408shttp://doi.org/10.1021/jp073408s .
Sheng Y J, Nung C H, Tsao H K. J Phys Chem B , 2006 . 110 ( 43 ): 21643 - 21650 . DOI:10.1021/jp0642950http://doi.org/10.1021/jp0642950 .
Chang H Y, Lin Y L, Sheng Y J, Tsao H K. Macromolecules , 2012 . 45 ( 11 ): 4778 - 4789 . DOI:10.1021/ma3007366http://doi.org/10.1021/ma3007366 .
Tan H N, Wang W, Yu C Y, Zhou Y F, Lu Z Y, Yan D Y. Soft Matter , 2015 . 11 ( 43 ): 8460 - 8470 . DOI:10.1039/C5SM01495Fhttp://doi.org/10.1039/C5SM01495F .
Tan H N, Yu C Y, Lu Z Y, Zhou Y F, Yan D Y. Soft Matter , 2017 . 13 ( 36 ): 6178 - 6188 . DOI:10.1039/C7SM01170Ahttp://doi.org/10.1039/C7SM01170A .
Wang Y L, Li B, Zhou Y F, Lu Z Y, Yan D Y. Soft Matter , 2013 . 9 ( 12 ): 3293 - 3304 . DOI:10.1039/c3sm27396bhttp://doi.org/10.1039/c3sm27396b .
Yu C Y, Ma L, Li K, Li S L, Liu Y N, Liu L F, Zhou Y F, Yan D Y. Langmuir , 2016 . 33 ( 1 ): 388 - 399.
Hoogerbrugge P J, Koelman J M V A. Europhys Lett , 1992 . 19 ( 3 ): 155 - 160 . DOI:10.1209/0295-5075/19/3/001http://doi.org/10.1209/0295-5075/19/3/001 .
Koelman J M V A, Hoogerbrugge P J. Europhys Lett , 1993 . 21 ( 3 ): 363 - 368 . DOI:10.1209/0295-5075/21/3/018http://doi.org/10.1209/0295-5075/21/3/018 .
Groot R D, Warren P B. J Chem Phys , 1997 . 107 ( 11 ): 4423 - 4435 . DOI:10.1063/1.474784http://doi.org/10.1063/1.474784 .
Wang Z K, Wang H B, Cheng M, Li C L, Faller R, Sun S Q, Hu S Q. ACS Nano , 2018 . 12 ( 2 ): 1413 - 1419 . DOI:10.1021/acsnano.7b07777http://doi.org/10.1021/acsnano.7b07777 .
Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y. J Comput Chem , 2013 . 34 ( 25 ): 2197 - 2211 . DOI:10.1002/jcc.23365http://doi.org/10.1002/jcc.23365 .
Han Y Y, Yu H Z, Du H B. J Am Chem Soc , 2010 . 132 ( 3 ): 1144 - 1150 . DOI:10.1021/ja909379yhttp://doi.org/10.1021/ja909379y .
Jiang Y, Zhu J T, Jiang W. J Phys Chem B , 2005 . 109 ( 46 ): 21549 - 21555 . DOI:10.1021/jp052420mhttp://doi.org/10.1021/jp052420m .
Molecular Topology Effects in Self-assembly of Giant Surfactants
Research Progress on Confined Assembly of Block Copolymers in China
Theoretical Study on the Self-assembly of Diblock Copolymers Under Cylindrical Confinement With Alternately Adsorbed Surfaces
Silica/Carbon Composite Hollow Mesoporous Microparticles by 3D Confined Self-assembly
Structured Liquids: Design, Construction and Applications
Related Author
No data
Related Institution
South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology
Key Laboratory of Materials Chemistry of Energy Conversion and Storage(HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology
浙江省高分子材料表面与界面科学重点实验室 浙江理工大学化学与化工学院
Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology