浏览全部资源
扫码关注微信
1.生命有机磷化学及化学生物学教育部重点实验室 清华大学化学系 北京 100084
2.北京软物质科学与工程高精尖创新中心 北京化工大学 北京 100029
3.中国农业大学理学院 北京 100094
Published:2020-3,
Published Online:7 January 2020,
Received:10 October 2019,
Revised:7 November 2019,
扫 描 看 全 文
Jie Hao, Yu-xia Gao, Hou-rui Chen, Jun Hu, Yong Ju. Sustainable Polymers Based on Natural Terpenes. [J]. Acta Polymerica Sinica 51(3):239-266(2020)
Jie Hao, Yu-xia Gao, Hou-rui Chen, Jun Hu, Yong Ju. Sustainable Polymers Based on Natural Terpenes. [J]. Acta Polymerica Sinica 51(3):239-266(2020) DOI: 10.11777/j.issn1000-3304.2019.19180.
随着可持续发展观念的逐步深入,可持续性聚合物已发展成为当今高分子领域的研究热点之一. 萜类化合物作为自然界中一类来源广泛的天然资源,具有多种可修饰位点和丰富的功能性,由它出发制备可持续性聚合物,不仅可以简化聚合物的合成步骤,还可以赋予聚合物独特的立体构型、良好的生物活性和生物相容性等特点,进而拓展其在表面涂层、生物医药、组织工程等领域中的应用. 本文综述了近年来国内外基于天然萜类可持续性聚合物的研究进展,从萜类化合物的结构特点出发,系统介绍了基于天然萜类可持续性聚合物的合成策略、特性及应用.
Sustainable polymers are a class of materials derived from renewable resources and exhibit closed-loop life cycles. The development of sustainable polymers has been an important research topic to meet the need of nonpetroleum-based materials and to reduce the dependence on fossil fuel over the past decades. Terpenes is a kind of natural products with extensive supply sources and has multiple reactive sites and chiral centers. They can be divided into cyclic monoterpenes
linear monoterpenes and polycyclic terpenes according to the number of isoprene units and skeleton ring in their molecular structures. Such structural characteristic can not only simplify the synthesis of sustainable polymers
but also be used to design sustainable polymers with accurate structure at the molecular level according to a variety of demands. Moreover
natural terpenes can endow sustainable polymers with unique stereochemical structures
good biological activity and biocompatibility
thus broadening their applications in surface coating
biological medicine
and tissue engineering. From the perspective of structural design
there are three main ways to construct natural terpene-based sustainable polymers: (1) main-chain sustainable polymers can be obtained by self-condensation polymerization or co-condensation of terpenes or their derivatives; (2) side-chain sustainable polymers can be obtained by homopolymerization or copolymerization of terpenes with unsaturated functional groups or terpene monomers modified by unsaturated moieties; (3) sustainable polymers end-capped with terpenes can be obtained by modifying the polymer chain end with terpenes or their derivatives. It should be noted that the structure discrepancy between natural terpenes may require different design strategies to create functional sustainable polymers. This paper reviews the progress of natural terpene-based sustainable polymers in recent decades in the order of cyclic monoterpenes
linear monoterpenes and polycyclic terpenes. The main resources
monomer design strategies and polymerization methods of natural terpenes
as well as the characteristics
advantages and potential applications of natural terpene-based sustainable polymers are discussed.
天然产物可持续性聚合物萜类
Natural productsSustainable polymersTerpenes
Zhang X, Fevre M, Jones G O, Waymouth R M. Chem Rev , 2018 . 118 839 - 885 . DOI:10.1021/acs.chemrev.7b00329http://doi.org/10.1021/acs.chemrev.7b00329 .
Kristufek S L, Wacker K T, Tsao Y Y T, Su L, Wooley K L. Nat Prod Rep , 2017 . 34 433 - 459 . DOI:10.1039/C6NP00112Bhttp://doi.org/10.1039/C6NP00112B .
Zhu Y, Romain C, Williams C K. Nature , 2016 . 540 354 - 362 . DOI:10.1038/nature21001http://doi.org/10.1038/nature21001 .
Gandini A, Lacerda T M, Carvalho A J F, Trovatti E. Chem Rev , 2016 . 116 1637 - 1669 . DOI:10.1021/acs.chemrev.5b00264http://doi.org/10.1021/acs.chemrev.5b00264 .
Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. Chem Rev , 2010 . 110 3552 - 3599 . DOI:10.1021/cr900354uhttp://doi.org/10.1021/cr900354u .
Schneiderman D K, Hillmyer M A. Macromolecules , 2017 . 50 3733 - 3749 . DOI:10.1021/acs.macromol.7b00293http://doi.org/10.1021/acs.macromol.7b00293 .
Gandini A, Lacerda T M. Prog Polym Sci , 2015 . 48 1 - 39 . DOI:10.1016/j.progpolymsci.2014.11.002http://doi.org/10.1016/j.progpolymsci.2014.11.002 .
Yao K, Tang C. Macromolecules , 2013 . 46 1689 - 1712 . DOI:10.1021/ma3019574http://doi.org/10.1021/ma3019574 .
Miao S, Wang P, Su Z, Zhang S. Acta Biomater , 2014 . 10 1692 - 1704 . DOI:10.1016/j.actbio.2013.08.040http://doi.org/10.1016/j.actbio.2013.08.040 .
Satoh K. Polym J , 2015 . 47 527 - 536 . DOI:10.1038/pj.2015.31http://doi.org/10.1038/pj.2015.31 .
Llevot A, Dannecker P K, Czapiewski M V, Over L C, Söyler Z, Meier M A R. Chem Eur J , 2016 . 22 11510 - 11521 . DOI:10.1002/chem.201602068http://doi.org/10.1002/chem.201602068 .
Eichhorn S J, Dufresne A, Aranguren M, Marcovich N E, Capadona J R, Rowan S J, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A N, Mangalam A, Simonsen J, Benight A S, Bismarck A, Berglund L A, Peijs T. J Mater Sci , 2010 . 45 1 - 33 . DOI:10.1007/s10853-009-3874-0http://doi.org/10.1007/s10853-009-3874-0 .
Wilbon P A, Chu F, Tang C. Macromol Rapid Commun , 2013 . 34 8 - 37 . DOI:10.1002/marc.201200513http://doi.org/10.1002/marc.201200513 .
Winnacker M, Rieger B. ChemSusChem , 2015 . 8 2455 - 2471 . DOI:10.1002/cssc.201500421http://doi.org/10.1002/cssc.201500421 .
Winnacker M. Angew Chem Int Ed , 2018 . 57 14362 - 14371 . DOI:10.1002/anie.201804009http://doi.org/10.1002/anie.201804009 .
Zhao J, Schlaad H. Adv Polym Sci , 2013 . 253 151 - 190.
Keszler B, Kennedy J P. Adv Polym Sci , 1992 . 100 1 - 9.
Lu J, Kamigaito M, Sawamoto M, Higashimura T, Deng Y X. Macromolecules , 1997 . 30 22 - 26 . DOI:10.1021/ma960118thttp://doi.org/10.1021/ma960118t .
Lu J, Kamigaito M, Sawamoto M, Higashimura T, Deng Y X. Macromolecules , 1997 . 30 27 - 31 .DOI:10.1021/ma9610976http://doi.org/10.1021/ma9610976 .
Kukhta N A, Vasilenko I V, Kostjuk S V. Green Chem , 2011 . 13 2362 - 2364 . DOI:10.1039/c1gc15593hhttp://doi.org/10.1039/c1gc15593h .
Winnacker M, Sag J, Tischner A, Rieger B. Macromol Rapid Commun , 2017 . 38 1600787 - 16000793 . DOI:10.1002/marc.201600787http://doi.org/10.1002/marc.201600787 .
Winnacker M, Sag J. Chem Commun , 2018 . 54 841 - 844 . DOI:10.1039/C7CC08266Ehttp://doi.org/10.1039/C7CC08266E .
Quilter H C, Hutchby M, Davidson M G, Jones M D. Polym Chem , 2017 . 8 833 - 837 . DOI:10.1039/C6PY02033Jhttp://doi.org/10.1039/C6PY02033J .
Liu S, Zhou L, Yu S, Xie C, Liu F, Song Z. Biomass Bioenergy , 2013 . 57 238 - 242 . DOI:10.1016/j.biombioe.2013.06.005http://doi.org/10.1016/j.biombioe.2013.06.005 .
Park H J, Ryu C Y, Crivello J V. J Polym Sci, Part A: Polym Chem , 2013 . 51 109 - 117 . DOI:10.1002/pola.26280http://doi.org/10.1002/pola.26280 .
Miyaji H, Satoh K, Kamigaito M. Angew Chem Int Ed , 2016 . 55 1372 - 1376 . DOI:10.1002/anie.201509379http://doi.org/10.1002/anie.201509379 .
Sainz M F, Souto J A, Regentova D, Johansson M K G, Timhagen S T, Irvine D J, Buijsen P, Koning C E, Stockman R A, Howdle S M. Polym Chem , 2016 . 7 2882 - 2887 . DOI:10.1039/C6PY00357Ehttp://doi.org/10.1039/C6PY00357E .
Strick B F, Delferro M, Geiger F M, Thomson R J. ACS Sustain Chem Eng , 2015 . 3 1278 - 1281 . DOI:10.1021/acssuschemeng.5b00255http://doi.org/10.1021/acssuschemeng.5b00255 .
Chandrakala R, Prarabdh C B, Promita G, Ashutosh U. Food Chem Toxicol , 2018 . 120 668 - 680 . DOI:10.1016/j.fct.2018.07.052http://doi.org/10.1016/j.fct.2018.07.052 .
Firdaus M, Espinosa L M D, Meier M A R. Macromolecules , 2011 . 44 7253 - 7262 . DOI:10.1021/ma201544ehttp://doi.org/10.1021/ma201544e .
Byrne C, Allen S, Lobkovsky E, Coates G. J Am Chem Soc , 2004 . 126 11404 - 11405 . DOI:10.1021/ja0472580http://doi.org/10.1021/ja0472580 .
Martín C, Kleij A W. Macromolecules , 2016 . 49 6285 - 6295 . DOI:10.1021/acs.macromol.6b01449http://doi.org/10.1021/acs.macromol.6b01449 .
Kindermann N, Cristofol À, Kleij A W. ACS Catal , 2017 . 7 3860 - 3863 . DOI:10.1021/acscatal.7b00770http://doi.org/10.1021/acscatal.7b00770 .
Chen W, Vermaak I, Viljoen A. Molecules , 2013 . 18 5434 - 5454 . DOI:10.3390/molecules18055434http://doi.org/10.3390/molecules18055434 .
Zhang H, Li J, Tian Z, Liu F. J Appl Polym Sci , 2013 . 129 3333 - 3340 . DOI:10.1002/app.39053http://doi.org/10.1002/app.39053 .
Choi G-H, Hwang D Y, Suh D H. Macromolecules , 2015 . 48 6839 - 6845 . DOI:10.1021/acs.macromol.5b01112http://doi.org/10.1021/acs.macromol.5b01112 .
Nsengiyumva O, Miller S A. Green Chem , 2019 . 21 973 - 978 . DOI:10.1039/C8GC03990Ahttp://doi.org/10.1039/C8GC03990A .
Robert C, Montigny F D, Thomas C M. Nat Commun , 2011 . 2 586 - 592 . DOI:10.1038/ncomms1596http://doi.org/10.1038/ncomms1596 .
Granger R E, Campbell E L, Johnston G A R. Biochem Pharmacol , 2005 . 69 1101 - 1111 . DOI:10.1016/j.bcp.2005.01.002http://doi.org/10.1016/j.bcp.2005.01.002 .
Roth S, Funk I, Hofer M, Sieber V. ChemSusChem , 2017 . 10 3574 - 3580 . DOI:10.1002/cssc.201701146http://doi.org/10.1002/cssc.201701146 .
Luo L, Li G, Luan D, Yuan Q, Wei Y, Wang X. ACS Appl Mater Interfaces , 2014 . 6 19371 - 19377 . DOI:10.1021/am505481qhttp://doi.org/10.1021/am505481q .
Speranza G, Gottardi G, Pederzolli C, Lunelli L, Canteri R, Pasquardini L, Carli E, Lui A, Maniglio D, Brugnara M, Anderle M. Biomaterials , 2004 . 25 2029 - 2037 . DOI:10.1016/j.biomaterials.2003.08.061http://doi.org/10.1016/j.biomaterials.2003.08.061 .
Hook, A L, Chang, C Y, Yang, J, Luckett J, Cockayne A, Atkinson S, Mei Y, Bayston R, Irvine D J, Langer R, Anderson D G, Williams P, Davies M C, Alexander M R. Nat Biotechnol , 2012 . 30 868 - 875 . DOI:10.1038/nbt.2316http://doi.org/10.1038/nbt.2316 .
Carvalho C C, Fonseca M M. Food Chem , 2006 . 95 413 - 422 . DOI:10.1016/j.foodchem.2005.01.003http://doi.org/10.1016/j.foodchem.2005.01.003 .
Lowe J R, Martello M T, Tolman W B, Hillmyer M A. Polym Chem , 2011 . 2 702 - 708 . DOI:10.1039/C0PY00283Fhttp://doi.org/10.1039/C0PY00283F .
Lowe J R, Tolman W B, Hillmyer M A. Biomacromolecules , 2009 . 10 2003 - 2008 . DOI:10.1021/bm900471ahttp://doi.org/10.1021/bm900471a .
Yang J, Lee S, Choi W J, Seo H, Kim K, Kim G J, Kim Y W, Shin J. Biomacromolecules , 2015 . 16 246 - 256 . DOI:10.1021/bm501450chttp://doi.org/10.1021/bm501450c .
Ding K, John A, Shin J, Lee Y, Quinn T, Tolman W B, Hillmyer M A. Biomacromolecules , 2015 . 16 2537 - 2539 . DOI:10.1021/acs.biomac.5b00754http://doi.org/10.1021/acs.biomac.5b00754 .
Winnacker M, Neumeier M, Zhang X, Papadakis C M, Rieger B. Macromol Rapid Commun , 2016 . 37 851 - 857 . DOI:10.1002/marc.201600056http://doi.org/10.1002/marc.201600056 .
Winnacker M, Vagin S, Auer V, Rieger B. Macromol Chem Phys , 2014 . 215 1654 - 1660 . DOI:10.1002/macp.201400324http://doi.org/10.1002/macp.201400324 .
Winnacker M, Tischner A, Neumeier M, Rieger B. RSC Adv , 2015 . 5 77699 - 77705 . DOI:10.1039/C5RA15656Dhttp://doi.org/10.1039/C5RA15656D .
Shin J, Lee Y, Tolman W B, Hillmyer M A. Biomacromolecules , 2012 . 13 3833 - 3840 . DOI:10.1021/bm3012852http://doi.org/10.1021/bm3012852 .
Zee N J V, Coates G W. Angew Chem Int Ed , 2015 . 54 2665 - 2668 . DOI:10.1002/anie.201410641http://doi.org/10.1002/anie.201410641 .
Zee N J V, Sanford M J, Coates G W. J Am Chem Soc , 2016 . 138 2755 - 2761 . DOI:10.1021/jacs.5b12888http://doi.org/10.1021/jacs.5b12888 .
Sanford M J, Carrodeguas L P, Zee N J V, Kleij A W, Coates G W. Macromolecules , 2016 . 49 6394 - 6400 . DOI:10.1021/acs.macromol.6b01425http://doi.org/10.1021/acs.macromol.6b01425 .
Behr A, Johnen L. ChemSusChem , 2009 . 2 1072 - 1095 . DOI:10.1002/cssc.200900186http://doi.org/10.1002/cssc.200900186 .
Marval C S, Hwa C C L. J Polym Sci , 1960 . XLV 25 - 34.
Cawse J L, Sanford J L, Still R H. J Appl Polym Sci , 1986 . 31 1963 - 1975 . DOI:10.1002/app.1986.070310702http://doi.org/10.1002/app.1986.070310702 .
Cawse J L, Sanford J L, Still R H. Polymer , 1987 . 28 368 - 374 . DOI:10.1016/0032-3861(87)90187-Xhttp://doi.org/10.1016/0032-3861(87)90187-X .
Sarkar P, Bhowmick A K. RSC Adv , 2014 . 4 61343 - 61354 . DOI:10.1039/C4RA09475Ahttp://doi.org/10.1039/C4RA09475A .
Sarkar P, Bhowmick A K. ACS Sustain Chem Eng , 2016 . 4 5462 - 5474 . DOI:10.1021/acssuschemeng.6b01038http://doi.org/10.1021/acssuschemeng.6b01038 .
Sarkar P, Bhowmick A K. J Polym Sci, Part A: Polym Chem , 2017 . 55 2639 - 2649 . DOI:10.1002/pola.28661http://doi.org/10.1002/pola.28661 .
Sarkar P, Bhowmick A K. ACS Sustain Chem Eng , 2016 . 4 2129 - 2141 . DOI:10.1021/acssuschemeng.5b01591http://doi.org/10.1021/acssuschemeng.5b01591 .
Newmark R A, Majumdar R N. J Polym Sci, Part A: Polym Chem , 1988 . 26 71 - 77 . DOI:10.1002/pola.1988.080260107http://doi.org/10.1002/pola.1988.080260107 .
Zhou C, Wei Z, Lei X, Li Y. RSC Adv , 2016 . 6 63508 - 63514 . DOI:10.1039/C6RA08689Fhttp://doi.org/10.1039/C6RA08689F .
Zhou C, Wei Z, Wang W, Yu Y, Leng X, Li Y. Eur Polym J , 2018 . 99 477 - 484 . DOI:10.1016/j.eurpolymj.2018.01.004http://doi.org/10.1016/j.eurpolymj.2018.01.004 .
Matic A, Schlaad H. Polym Int , 2018 . 67 500 - 505 . DOI:10.1002/pi.5534http://doi.org/10.1002/pi.5534 .
Bolton J M, Hillmyer M A, Hoye T R. ACS Macro Lett , 2014 . 3 717 - 720 . DOI:10.1021/mz500339hhttp://doi.org/10.1021/mz500339h .
Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B. Prog Polym Sci , 2013 . 38 63 - 235 . DOI:10.1016/j.progpolymsci.2012.06.002http://doi.org/10.1016/j.progpolymsci.2012.06.002 .
Raynaud J, Wu J Y, Ritter T. Angew Chem Int Ed , 2012 . 51 11805 - 11808 . DOI:10.1002/anie.201205152http://doi.org/10.1002/anie.201205152 .
Jia X, Li W, Zhao J, Yi F, Luo Y, Gong D. Organometallics , 2019 . 38 278 - 288 . DOI:10.1021/acs.organomet.8b00708http://doi.org/10.1021/acs.organomet.8b00708 .
Li W, Zhao J, Zhang X, Gong D. Ind Eng Chem Res , 2019 . 58 2792 - 2800 . DOI:10.1021/acs.iecr.8b05866http://doi.org/10.1021/acs.iecr.8b05866 .
Zhao J, Chen H, Li W, Jia X, Zhang X, Gong D. Inorg Chem , 2018 . 57 4088 - 4097 . DOI:10.1021/acs.inorgchem.8b00270http://doi.org/10.1021/acs.inorgchem.8b00270 .
Valente A, Mortreux A, Visseaux M, Zinck P. Chem Rev , 2013 . 113 3836 - 3857 . DOI:10.1021/cr300289zhttp://doi.org/10.1021/cr300289z .
Belaid I, Macqueron B, Poradowski M N, Bouaouli S, Thuilliez J, Cruz-Boisson F D, Monteil V, D’Agosto F, Perrin L, Boisson C.. ACS Catal , 2019 . 9 9298 - 9309.
Göttker-Schnetmann I, Kenyon P, Mecking S. Angew Chem Int Ed , 2019 . 58 2 - 7 . DOI:10.1002/anie.201813331http://doi.org/10.1002/anie.201813331 .
León Gómez R E D, Enríquez-Medrano F J, Textle H M, Carrizales R M, Acosta K R, González H R L, Romero J L O, Uribe L E L. Can J Chem Eng , 2016 . 94 823 - 832 . DOI:10.1002/cjce.22458http://doi.org/10.1002/cjce.22458 .
Loughmari S, Hafid A, Bouazza A, Bouadili A E, Zinck P, Visseaux M. J Polym Sci, Part A: Polym Chem , 2012 . 50 2898 - 2905 . DOI:10.1002/pola.26069http://doi.org/10.1002/pola.26069 .
Georges S, Touré A O, Visseaux M, Zinck P. Macromolecules , 2014 . 47 4538 - 4547 . DOI:10.1021/ma5008896http://doi.org/10.1021/ma5008896 .
Kularatne R N, Yang A, Nguyen H Q, McCandless G T, Stefan M C. Macromol Rapid Commun , 2017 . 1700427 - 1700431.
Naddeo M, Buonerba A, Luciano E, Grassi A, Proto A, Capacchione C. Polymer , 2017 . 131 151 - 159 . DOI:10.1016/j.polymer.2017.10.028http://doi.org/10.1016/j.polymer.2017.10.028 .
Moad G. Polym Int , 2017 . 66 26 - 41 . DOI:10.1002/pi.5173http://doi.org/10.1002/pi.5173 .
Hilschmann J, Kali G. Eur Polym J , 2015 . 73 363 - 373 . DOI:10.1016/j.eurpolymj.2015.10.021http://doi.org/10.1016/j.eurpolymj.2015.10.021 .
Bauer N, Brunke J, Kali G. ACS Sustainable Chem Eng , 2017 . 5 10084 - 10092 . DOI:10.1021/acssuschemeng.7b02091http://doi.org/10.1021/acssuschemeng.7b02091 .
Métafiot A, Kanawati Y, Gérard J F, Defoort B, Maric M. Macromolecules , 2017 . 50 3101 - 3120 . DOI:10.1021/acs.macromol.6b02675http://doi.org/10.1021/acs.macromol.6b02675 .
Kobayashi S, Lu C, Hoye T R, Hillmyer M A. J Am Chem Soc , 2009 . 131 7960 - 7961 . DOI:10.1021/ja9027567http://doi.org/10.1021/ja9027567 .
Liu B, Li S, Wang M, Cui D. Angew Chem Int Ed , 2017 . 56 4560 - 4564 . DOI:10.1002/anie.201700546http://doi.org/10.1002/anie.201700546 .
Yamamoto D, Matsumoto A. Macromolecules , 2013 . 46 9526 - 9536 . DOI:10.1021/ma4020092http://doi.org/10.1021/ma4020092 .
Matsumoto A, Yamamoto D. J Polym Sci, Part A: Polym Chem , 2016 . 54 3616 - 3625 . DOI:10.1002/pola.28248http://doi.org/10.1002/pola.28248 .
Goldblatt L A, Palkin S. J Am Chem Soc , 1941 . 63 3517 - 3522 . DOI:10.1021/ja01857a075http://doi.org/10.1021/ja01857a075 .
Veazey R L. US Patent, US4694059A. 1987-09-15
Marvel C S, Kiener P E, Vessel E D. J Am Chem Soc , 1959 . 81 4694 - 4697 . DOI:10.1021/ja01526a062http://doi.org/10.1021/ja01526a062 .
Marvel C S, Kiener P E. J Polym Sci , 1962 . 61 311 - 331 . DOI:10.1002/pol.1962.1206117205http://doi.org/10.1002/pol.1962.1206117205 .
Puskas J E, Gergely A L, Kaszas G. J Polym Sci, Part A: Polym Chem , 2013 . 51 29 - 33 . DOI:10.1002/pola.26306http://doi.org/10.1002/pola.26306 .
Gergely A L, Puskas J E. J Polym Sci, Part A: Polym Chem , 2015 . 53 1567 - 1574.
Gergely A L, Turkarslan O, Puskas J E, Kaszas G. J Polym Sci, Part A: Polym Chem , 2013 . 51 4717 - 4721 . DOI:10.1002/pola.26915http://doi.org/10.1002/pola.26915 .
Roh J H, Roy D, Lee W K, Gergely A L, Puskas J E, Roland C M. Polymer , 2015 . 56 280 - 283 . DOI:10.1016/j.polymer.2014.11.015http://doi.org/10.1016/j.polymer.2014.11.015 .
Sahu P, Sarkar P, Bhowmick A K. ACS Sustainable Chem Eng , 2017 . 5 7659 - 7669 . DOI:10.1021/acssuschemeng.7b00990http://doi.org/10.1021/acssuschemeng.7b00990 .
Srivastava A K, Pandey P. Eur Polym J , 2002 . 38 1709 - 1712 . DOI:10.1016/S0014-3057(02)00028-9http://doi.org/10.1016/S0014-3057(02)00028-9 .
Sharma S, Srivastava A K. J Appl Polym Sci , 2008 . 108 892 - 899 . DOI:10.1002/app.26838http://doi.org/10.1002/app.26838 .
Misra G, Srivastava A K. Colloid Polym Sci , 2008 . 286 445 - 451 . DOI:10.1007/s00396-007-1794-6http://doi.org/10.1007/s00396-007-1794-6 .
Shukla A, Srivastava A K. Polym Adv Technol , 2004 . 15 445 - 452 . DOI:10.1002/pat.373http://doi.org/10.1002/pat.373 .
Shukla A, Srivastava A K. J Appl Polym Sci , 2004 . 92 1134 - 1143 . DOI:10.1002/app.13658http://doi.org/10.1002/app.13658 .
Shukla A, Srivastava A K. J Macromol Sci, Part A: Pure Appl Chem , 2003 . 40 61 - 80 . DOI:10.1081/MA-120016674http://doi.org/10.1081/MA-120016674 .
Shukla A, Srivastava A K. High Perform Polym , 2003 . 15 243 - 257 . DOI:10.1177/0954008303015003002http://doi.org/10.1177/0954008303015003002 .
Shukla A, Srivastava A K. Polym Plast Technol Eng , 2002 . 41 777 - 793 . DOI:10.1081/PPT-120006448http://doi.org/10.1081/PPT-120006448 .
Srivastava A K, Pandey P. Polym Int , 2001 . 50 937 - 945 . DOI:10.1002/pi.717http://doi.org/10.1002/pi.717 .
Pandey P, Srivastava A K. J Polym Sci, Part A: Polym Chem , 2002 . 40 1243 - 1252 . DOI:10.1002/pola.10173http://doi.org/10.1002/pola.10173 .
Pathak S, Srivastava A K. J Appl Polym Sci , 2009 . 112 2601 - 2608 . DOI:10.1002/app.29614http://doi.org/10.1002/app.29614 .
Pandey P, Srivastava A K. Des Monomers Polym , 2003 . 6 197 - 209 . DOI:10.1163/156855503768338250http://doi.org/10.1163/156855503768338250 .
Srivastava A K, Pandey P, Mishra G. J Appl Polym Sci , 2006 . 102 4908 - 4914 . DOI:10.1002/app.24883http://doi.org/10.1002/app.24883 .
Pandey P, Srivastava A K. Adv Polym Tech , 2002 . 21 59 - 64 . DOI:10.1002/adv.10009http://doi.org/10.1002/adv.10009 .
Busch H, Stempfle F, Heß S, Grau E, Mecking S. Green Chem , 2014 . 16 4541 - 4545 . DOI:10.1039/C4GC01233Jhttp://doi.org/10.1039/C4GC01233J .
Liu X, Xin W, Zhang J. Green Chem , 2009 . 11 1018 - 1025 . DOI:10.1039/b903955dhttp://doi.org/10.1039/b903955d .
Liu X, Xin W, Zhang J. Bioresour Technol , 2010 . 101 2520 - 2524 . DOI:10.1016/j.biortech.2009.11.028http://doi.org/10.1016/j.biortech.2009.11.028 .
Wang H, Liu B, Liu X, Zhang J, Xian M. Green Chem , 2008 . 10 1190 - 1196 . DOI:10.1039/b803295ehttp://doi.org/10.1039/b803295e .
Wang H, Liu B, Liu X, Zhang J, Xian M. Polym Int , 2009 . 58 1435 - 1441 . DOI:10.1002/pi.2680http://doi.org/10.1002/pi.2680 .
Bicu I, Mustata F. Angew Makromol Chem , 1993 . 213 169 - 179 . DOI:10.1002/apmc.1993.052130115http://doi.org/10.1002/apmc.1993.052130115 .
Bicu I, Mustata F. Angew Makromol Chem , 1999 . 264 21 - 29 . DOI:10.1002/(SICI)1522-9505(19990201)264:1<21::AID-APMC21>3.0.CO;2-4http://doi.org/10.1002/(SICI)1522-9505(19990201)264:1<21::AID-APMC21>3.0.CO;2-4 .
Bicu I, Mustata F. J Appl Polym Sci , 2004 . 92 2240 - 2252 . DOI:10.1002/app.20116http://doi.org/10.1002/app.20116 .
Bicu I, Mustata F. J Polym Sci, Part A: Polym Chem , 2005 . 43 6308 - 6322 . DOI:10.1002/pola.21070http://doi.org/10.1002/pola.21070 .
Bicu I, Mustata F. Eur Polym J , 2010 . 46 1316 - 1327 . DOI:10.1016/j.eurpolymj.2010.03.011http://doi.org/10.1016/j.eurpolymj.2010.03.011 .
Bicu I, Mustata F. J Polym Sci, Part A: Polym Chem , 2007 . 45 5979 - 5990 . DOI:10.1002/pola.22352http://doi.org/10.1002/pola.22352 .
Bicu I, Mustata F. Macromol Mater Eng , 2000 . 280/281 47 - 53 . DOI:10.1002/1439-2054(20000801)280:1<47::AID-MAME47>3.0.CO;2-#http://doi.org/10.1002/1439-2054(20000801)280:1<47::AID-MAME47>3.0.CO;2-# .
Atta A, El-Saeed S, Farag R. React Funct Polym , 2006 . 66 1596 - 1608 . DOI:10.1016/j.reactfunctpolym.2006.06.002http://doi.org/10.1016/j.reactfunctpolym.2006.06.002 .
Zheng Y, Yao K, Lee J, Chandler D, Wang J, Wang C, Chu F, Tang C. Macromolecules , 2010 . 43 5922 - 5924 . DOI:10.1021/ma101071phttp://doi.org/10.1021/ma101071p .
Chen Y, Wilbon P A, Chen Y P, Zhou J, Nagarkatti M, Wang C, Chu F, Decho A W, Tang C. RSC Adv , 2012 . 2 10275 - 10282 . DOI:10.1039/c2ra21675bhttp://doi.org/10.1039/c2ra21675b .
Wang J, Chen Y P, Yao K, Wilbon P A, Zhang W, Ren L, Zhou J, Nagarkatti M, Wang C, Chu F, He X, Decho A W, Tang C. Chem Commun , 2012 . 48 916 - 918 . DOI:10.1039/C1CC16432Ehttp://doi.org/10.1039/C1CC16432E .
Yao K, Wang J, Zhang W, Lee J S, Wang C, Chu F, He X, Tang C. Biomacromolecules , 2011 . 12 2171 - 2177 . DOI:10.1021/bm200460uhttp://doi.org/10.1021/bm200460u .
Pohjala L, Alakurtti S, Ahola T, Yli-Kauhaluoma J, Tammela P. J Nat Prod , 2009 . 72 1917 - 1926 . DOI:10.1021/np9003245http://doi.org/10.1021/np9003245 .
Sami A, Taru M, Salme K, Jari Y K. Eur J Pharm Sci , 2006 . 29 1 - 13 . DOI:10.1016/j.ejps.2006.04.006http://doi.org/10.1016/j.ejps.2006.04.006 .
Jeromenok J, Böhlmann W, Antonietti M, Weber J. Macromol Rapid Commun , 2011 . 32 1846 - 1851 . DOI:10.1002/marc.201100532http://doi.org/10.1002/marc.201100532 .
Chen Y, Song Q, Zhao J, Gong X, Schlaad H, Zhang G. ACS Appl Mater Interfaces , 2018 . 10 6593 - 6600 . DOI:10.1021/acsami.7b16255http://doi.org/10.1021/acsami.7b16255 .
Gorbunova M N, Krainova G F, Tolmacheva I A, Grishko V V. Russ J Appl Chem , 2012 . 85 1137 - 1141 . DOI:10.1134/S1070427212070269http://doi.org/10.1134/S1070427212070269 .
Ma Z, Jia Y G, Zhu X X. Biomacromolecules , 2017 . 18 3812 - 3818 . DOI:10.1021/acs.biomac.7b01106http://doi.org/10.1021/acs.biomac.7b01106 .
Kao T C, Wu C H, Yen G C. J Agric Food Chem , 2014 . 62 542 - 553 . DOI:10.1021/jf404939fhttp://doi.org/10.1021/jf404939f .
Salvador J A R, Leal A S, Valdeira A S, Gonçalves B M F, Alho D P S, S Figueiredo S A C, Silvestre S M, Mendes V I S. Eur J Med Chem , 2017 . 142 95 - 130 . DOI:10.1016/j.ejmech.2017.07.013http://doi.org/10.1016/j.ejmech.2017.07.013 .
Li Y, Li J, Zhao X, Yan Q, Gao Y, Hao J, Hu J, Ju Y. Chem Eur J , 2016 . 22 18435 - 18441 . DOI:10.1002/chem.201603753http://doi.org/10.1002/chem.201603753 .
Hao J, Gao Y, Li Y, Yan Q, Hu J, Ju Y. Chem Asian J , 2017 . 12 2231 - 2236 . DOI:10.1002/asia.201700581http://doi.org/10.1002/asia.201700581 .
Li Y, Gao Y, Wang B, Hao J, Hu J, Ju Y. Chem Asian J , 2018 . 13 2723 - 2729 . DOI:10.1002/asia.201800761http://doi.org/10.1002/asia.201800761 .
Hao J, Gao Y, Zheng C, Liu J, Hu J, Ju Y. ACS Macro Lett , 2018 . 7 1131 - 1137 . DOI:10.1021/acsmacrolett.8b00560http://doi.org/10.1021/acsmacrolett.8b00560 .
Ma Y, Hao J, Zhao K, Ju Y, Hu J, Gao Y, Du F. J Colloid Interface Sci , 2019 . 541 93 - 100 . DOI:10.1016/j.jcis.2019.01.088http://doi.org/10.1016/j.jcis.2019.01.088 .
0
Views
54
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution