have been newly found to trigger dehydration condensation reaction among/between polypropylene chains to form long-chain branched (LCB) structures in the presence of water. Hydrogen is often used as a chain transfer agent to regulate the molecular weight of the polymer in olefin polymerization. Therefore
whether or how hydrogen affects the insertion of the di(5-hexenyl)dichlorosilane in the polymerization of propylene is a topic worthy of study. Herein
the copolymerization of di(5-hexenyl)dichlorosilane and propylene has been investigated based on MgCl
2
/TiCl
4
catalyst (9
9-bis(methoxymethyl)fluorine (BMMF)
as internal electron donor) in bulk polymerization conditions. The polypropylene microstructure was analysed by changing hydrogen content while the amount of di(5-hexenyl)dichlorosilane was fixed. It was found that hydrogen significantly improved the activity of catalyst and reduced the molecular weight of polymer. The
1
H-NMR results show that the pendant double bonds in the polypropylene chain decreased from 0.12 mol% to 0.05 mol%
illustrating that hydrogen inhibited the insertion of di(5-hexenyl)dichlorosilane in the polymerization. The higher the hydrogen content
the lower the insertion of di(5-hexenyl)dichlorosilane in the polypropylene chain
which corresponds to the decreasing density of long-branched chains in the polymer. Analysis of the insoluble portion of the polymer in the xylene showed that there is no gel in the presence of hydrogen. The creep test results exhibit that the value of
M
b
/
M
w
increases from 0.70 to 0.95
which quantitatively indicates that the long-chain branching density in the polymer decreases with the increasing hydrogen content. The long-branched chain density in polymer decreases with the increasing hydrogen content
which is also confirmed by the results of small amplitude oscillatory shear rheology test.
关键词
Ziegler-Natta催化剂氢气氯硅烷功能化αω-双烯烃长链支化结构链转移反应
Keywords
Ziegler-Natta catalystHydrogenDi(5-hexenyl)dichlorosilaneLong-branched chain structureChain transfer
references
Klaue A, Kruck M, Friederichs N, Bertola F, Wu H, Morbidelli M. Ind Eng Chem Res , 2019 . 58 ( 2 ): 886 - 896 . DOI:10.1021/acs.iecr.8b05296http://doi.org/10.1021/acs.iecr.8b05296 .
Liu P W, Liu W F, Wang W J, Li B G, Zhu S P. Macromol React Eng , 2016 . 10 ( 3 ): 156 - 179 . DOI:10.1002/mren.201500053http://doi.org/10.1002/mren.201500053 .
Yang T T, Qin Y W, Dong J Y. Macromolecules , 2018 . 51 ( 22 ): 9234 - 9249 . DOI:10.1021/acs.macromol.8b01958http://doi.org/10.1021/acs.macromol.8b01958 .
Walter P, Trinkle S, Lilge D, Friedrich C, Mülhaupt R. Macromol Mater Eng , 2001 . 286 ( 5 ): 309 - 315 . DOI:10.1002/1439-2054(20010501)286:5<309::AID-MAME309>3.0.CO;2-Fhttp://doi.org/10.1002/1439-2054(20010501)286:5<309::AID-MAME309>3.0.CO;2-F .
Wang B, Zhang Y M, Ma Z, Pan L, Yu S J, Li Y S. Polym Chem , 2016 . 7 ( 17 ): 2938 - 2946 . DOI:10.1039/C6PY00333Hhttp://doi.org/10.1039/C6PY00333H .
Wang B, Long Y Y, Li Y G, Men Y F, Li Y S. Polymer , 2015 . 61 108 - 114 . DOI:10.1016/j.polymer.2015.01.076http://doi.org/10.1016/j.polymer.2015.01.076 .
Shi J J, Dong J Y. Polymer , 2016 . 85 10 - 18 . DOI:10.1016/j.polymer.2016.01.024http://doi.org/10.1016/j.polymer.2016.01.024 .
Bukatov G D, Goncharov V S, Eakharov V A. Macromol Chem Phys , 1995 . 196 ( 5 ): 1751 - 1759 . DOI:10.1002/macp.1995.021960529http://doi.org/10.1002/macp.1995.021960529 .
Vittoria A, Mingione A, Abbate R A, Cipullo R, Busico V. Ind Eng Chem Res , 2019 . 58 ( 32 ): 14729 - 14735 . DOI:10.1021/acs.iecr.9b02801http://doi.org/10.1021/acs.iecr.9b02801 .
Chadwick J C, Morini G, Balbontin G. Camurati I, Heere J J R, Mingozzi I, Teston F. Macromol Chem Phys , 2001 . 202 ( 10 ): 1995 - 2002 . DOI:10.1002/1521-3935(20010601)202:10<1995::AID-MACP1995>3.0.CO;2-Lhttp://doi.org/10.1002/1521-3935(20010601)202:10<1995::AID-MACP1995>3.0.CO;2-L .
Chadwick J C, Morini G, Albizzati E, Balbontin G, Mingozzi I, Cristofori A, Sudmeijer O, vanKessel G M M. Macromol Chem Phys , 1996 . 197 ( 8 ): 2501 - 2510 . DOI:10.1002/macp.1996.021970814http://doi.org/10.1002/macp.1996.021970814 .
Alshaiban A, Soares J B P. Macromol React Eng , 2014 . 8 ( 10 ): 723 - 735 . DOI:10.1002/mren.201400028http://doi.org/10.1002/mren.201400028 .
Synthesis of Long-chain-branched High-density Polyethylene with Ziegler-Natta Catalyst and ω-Alkenylmethyldichlorosilane Copolymerization-Hydrolysis Chemistry
Ethylene/Isoprene Copolymerization with Supported Ziegler-Natta Catalyst Containing Internal Electron Donor
Flowability of Ethylene-Propylene Copolymer in Situ-regulated by Long-chain Nonconjugated α,ω-Diolefin
Controlling Phase Morphology of EPR in Polypropylene Heterophasic Copolymer by Dichlorosilane-Functionalized Nonconjugated α,ω-Diolefin
Particle Morphology Control of Polypropylene Heterophasic Copolymer at Increased EPR Content by Simultaneous Cross-linking
Related Author
No data
Related Institution
Shaanxi Yanchang Zhongmei Yulin Energy & Chemical Company
CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Acadamy of Sciences
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
Institute for Petrochemical Research, PetroChina Company Limited
Petrochemical Research Institute of PetroChina Co., Ltd.