Post-sulfonation for Precisely Controllable Preparation of Main-chain Type Sulfonated Poly(phenylquinoxaline)s and Their Properties for Proton Exchange Membrane
返回论文页
|更新时间:2021-01-26
|
Post-sulfonation for Precisely Controllable Preparation of Main-chain Type Sulfonated Poly(phenylquinoxaline)s and Their Properties for Proton Exchange Membrane
Lu Liu, Kang-cheng Chen. Post-sulfonation for Precisely Controllable Preparation of Main-chain Type Sulfonated Poly(phenylquinoxaline)s and Their Properties for Proton Exchange Membrane. [J]. Acta Polymerica Sinica 51(4):393-402(2020)
DOI:
Lu Liu, Kang-cheng Chen. Post-sulfonation for Precisely Controllable Preparation of Main-chain Type Sulfonated Poly(phenylquinoxaline)s and Their Properties for Proton Exchange Membrane. [J]. Acta Polymerica Sinica 51(4):393-402(2020) DOI: 10.11777/j.issn1000-3304.2019.19203.
Post-sulfonation for Precisely Controllable Preparation of Main-chain Type Sulfonated Poly(phenylquinoxaline)s and Their Properties for Proton Exchange Membrane
A series of main-chain type sulfonated poly(phenylquinoxaline) (SPPQ) were prepared by post-sulfonation of PPQs
which were synthesized from copolymerization of 4
4′ -bis(4-(2-phenylethylenedione)phenoxybiphenyl and 4
4′ -bis(2-phenylethylenedione)diphenylether with 3
3′
4
4′ -tetraaminobiphenyl under different molar ratios. They were confirmed by the model compounds that sulfonic acid groups were precisely introduced to the 2
2′-position of the biphenyl fragment with high electron cloud density on SPPQ backbone. Therefore
sulfonic acid groups can be predicablely introduced to the polymer main-chain under mild conditions by the combination of monomer molecular structure design and post-sulfonation proceeding. Relative viscosity of these SPPQs was higher than 3.8 dL/g
indicating their high molecular weight. SPPQ-based proton exchange membranes (PEMs) were prepared by solution casting method. Their properties such as ion exchange capacity (IEC)
water uptake
swell ratio
oxidative stability
mechanical properties and proton conductivity were investigated. The TGA results indicated that SPPQ PEMs had good thermal stability with the desulfonic acid groups temperature at about 320 °C and the decompose temperature at about 550 °C. All SPPQ PEMs showed water uptake less than 39% and in-plane swelling ratio linearly increased with increasing IEC and temperature
with the values ranging from 2.1% – 13%. For example
SPPQ-5 with the IEC value up to 2.21 meq/g showed excellent dimensional stability with only 11% and 13% in-plane direction and thickness direction of the swelling ratios at 80 °C
respectively. Free radical oxidative stability test in Fenton reagent showed that the breaking time of SPPQ PEMs decreased with increasing IEC. For example
the SPPQ-1 (1.29 meq/g) has breaking time of over 150 h at 20 °C
whereas the value decreased to 81 h for SPPQ-5 (2.21 meq/g). Proton conductivity of SPPQ PEMs were increased obviously with the increase of temperature and IEC
and the maximum proton conductivity reached 64 mS/cm. The proton conductivities are much lower than that of Nafion NR212
due to the formation of acid-base groups between sulfonic acid groups and quinoxaline groups and the obviously low water uptake of the PEM.
Zhang H Y, Stanis R J, Song Y, Hu W, Cornelius C J, Shi Q, Liu B J, Guiver M D. J Power Sources , 2017 . ( 368 ): 30 - 37.
Min C M, Lee S B, Ahn M K, Jang J, Lee J S. J Polym Sci, Part A: Polym Chem , 2019 . 57 ( 11 ): 1180 - 1188 . DOI:10.1002/pola.29372http://doi.org/10.1002/pola.29372 .
Bose S, Kuila T, Nguyen T X H, Kim N H, Laua K T, Lee J H. Prog Polym Sci , 2011 . 36 813 - 843 . DOI:10.1016/j.progpolymsci.2011.01.003http://doi.org/10.1016/j.progpolymsci.2011.01.003 .
Ruiz-Colón E, Pérez-Pérez M, Suleiman D. J Polym Sci, Part A: Polym Chem , 2018 . 56 ( 13 ): 1424 - 1435 . DOI:10.1002/pola.29023http://doi.org/10.1002/pola.29023 .
Huang Q, Zhang S, Yu H, Liu H, Xiao F, Liao H. J Polym Sci, Part A: Polym Chem , 2019 . 57 ( 10 ): 1097 - 1104 . DOI:10.1002/pola.29364http://doi.org/10.1002/pola.29364 .
Liu Jianhua(刘建华), Sun Meng(孙猛). Acta Optica Sinica(光学学报) , 2000 . 20 ( 11 ): 1570 - 1574 . DOI:10.3321/j.issn:0253-2239.2000.11.025http://doi.org/10.3321/j.issn:0253-2239.2000.11.025 .
Bae J M, Honma I, Murata M, Yamamotoet T, Rikukawa M, Ogata N. Solid State Ion , 2002 . 147 ( 1-2 ): 189 - 194 . DOI:10.1016/S0167-2738(02)00011-5http://doi.org/10.1016/S0167-2738(02)00011-5 .
Matsumura S, Hlil A R, Lepiller C, Gaudet J, Guay D, Hay A S. Macromolecules , 2008 . 41 ( 2 ): 277 - 280 . DOI:10.1021/ma071423phttp://doi.org/10.1021/ma071423p .
Xing P X, Robertson G P, Guiver M D, Mikhailenko S D, Kaliaguine S. Macromolecules , 2004 . 37 ( 21 ): 7960 - 7967 . DOI:10.1021/ma0494941http://doi.org/10.1021/ma0494941 .
Kopitzke R W, Linkous C A, Nelson G L. J Polym Sci, Part A: Polym Chem , 1998 . 36 ( 7 ): 1197 - 1199 . DOI:10.1002/(SICI)1099-0518(199805)36:7<1197::AID-POLA17>3.0.CO;2-2http://doi.org/10.1002/(SICI)1099-0518(199805)36:7<1197::AID-POLA17>3.0.CO;2-2 .
Kopitzke R W, Linkous C A, Anderson H R, Nelson G L. J Electrochem Soc , 2000 . 147 ( 5 ): 1677 - 1681 . DOI:10.1149/1.1393417http://doi.org/10.1149/1.1393417 .
Gong, F X, Li N W, Zhang S B. Polymer , 2009 . 50 ( 25 ): 6001 - 6008 . DOI:10.1016/j.polymer.2009.10.033http://doi.org/10.1016/j.polymer.2009.10.033 .
Gil M, Ji X, Li X, Na H, Eric Hampsey J, Lu Y. J Membr Sci , 2004 . 234 ( 1-2 ): 75 - 81 . DOI:10.1016/j.memsci.2003.12.021http://doi.org/10.1016/j.memsci.2003.12.021 .
Merlet S, Marestin C, Romeyer O, Mercier R G. Macromolecules , 2008 . 41 ( 12 ): 4205 - 4215 . DOI:10.1021/ma800228uhttp://doi.org/10.1021/ma800228u .