浏览全部资源
扫码关注微信
武汉大学化学与分子科学学院 武汉 430072
Published:2020-1,
Published Online:19 November 2019,
Received:30 August 2019,
Revised:27 September 2019,
扫 描 看 全 文
Bo Duan, Hu Tu, Li-na Zhang. Material Research Progress of the Sustainable Polymer-Cellulose. [J]. Acta Polymerica Sinica 51(1):66-86(2020)
Bo Duan, Hu Tu, Li-na Zhang. Material Research Progress of the Sustainable Polymer-Cellulose. [J]. Acta Polymerica Sinica 51(1):66-86(2020) DOI: 10.11777/j.issn1000-3304.2020.19160.
21世纪“绿色”化学已成为世界各国社会经济发展中的研究与开发战略方向. 纤维素是自然界中储量最丰富的天然高分子,是重要的可再生资源以及未来的主要工业原料. 然而由于纤维素存在着大量的分子内以及分子间氢键,其结构致密,难以溶解或熔融进一步加工. 本文简要介绍了近几年来关于直接使用物理溶剂方法(非衍生化)对纤维素材料开发利用的新进展,主要包括以下4个方面:(1)纤维素在“绿色”溶剂-碱/尿素以及离子液体体系中的溶解和再生;(2)纳米纤维素的制备以及组装;(3)木材纳米技术的开发及利用;(4)细菌纤维素基材料等,旨在推进“绿色”技术实现纤维素资源的研究开发及利用.
The “Green Chemistry” has become the strategy direction of research and development of the world in the 21
th
century. Cellulose
as the most abundant natural polymers
is a very important renewable resource and the main industrial raw material. The cellulose shows many great advances including biocompatibility
biodegradability
high structure stability. However
due to the large amounts of inter- and intra-hydrogen bonding among the cellulose molecules
the cellulose has a dense structure and is very hard to be processed through dissolution or melt
which limit the further exploitation of the cellulose resource. The traditional organic solution of the cellulose often has the problem of high cost and pollution. In recent decades
with the development of the “Green” solvent (alkaline/urea
ionic liquid
etc
.) and the cellulose nanotechnology
the researchers have greatly expanded the cellulose application in biomedical
energy storage
optical fields in addition to the traditional spinning and papermaking industry. This review mainly introduces the new methods (“bottom to up” and “up to down”) for the exploitation of cellulose based materials in recent years through the following four sections: (1) the regenerated cellulose based materials from the “green” solution-alkaline/urea aqueous and ionic liquid; (2) the preparation and self-assembly of the nanocellulose; (3) the development and utilization of the wood nanotechnology; (4) bacterial cellulose based functional materials.
纤维素可持续高分子碱/尿素离子液体纳米纤维素纳米技术细菌纤维素
“Green” chemistryAlkaline/UreaIonic liquidNanocelluloseWood nanotechnologyBacterial cellulose
Chandhuri S. The Wall Street Journal @ Statista Charts, 2018-12-12
Macarthur E. Science , 2017 . 358 ( 6365 ): 843 DOI:10.1126/science.aao6749http://doi.org/10.1126/science.aao6749 .
Science, 2017, 358(6369): 1362 − 1363
Lamb J B, Willis B L, Fiorenza E A, Couch C S, Howard R, Rader D N, True J D, Kelly L A, Ahmad A, Jompa J. Science , 2018 . 359 ( 6374 ): 460 - 462 . DOI:10.1126/science.aar3320http://doi.org/10.1126/science.aar3320 .
People’s Daily Overseas Edition, 2019-07-05
Zhu Y, Romain C, Williams C K. Nature , 2016 . 540 354 - 362 . DOI:10.1038/nature21001http://doi.org/10.1038/nature21001 .
Smaglik P. Nature , 2000 . 406 807 - 808 . DOI:10.1038/35021181http://doi.org/10.1038/35021181 .
Wang S, Lu A, Zhang L. Prog Polym Sci , 2016 . 53 169 - 206 . DOI:10.1016/j.progpolymsci.2015.07.003http://doi.org/10.1016/j.progpolymsci.2015.07.003 .
Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C C, Kuga S. Macromolecules , 2008 . 41 ( 23 ): 9345 - 9351 . DOI:10.1021/ma801110ghttp://doi.org/10.1021/ma801110g .
Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L. J Phys Chem B , 2014 . 118 ( 34 ): 10250 - 10257 . DOI:10.1021/jp501408ehttp://doi.org/10.1021/jp501408e .
Wang S, Sun P, Liu M, Lu A, Zhang L. Phys Chem Chem Phys , 2017 . 19 ( 27 ): 17909 - 17917 . DOI:10.1039/C7CP02514Ahttp://doi.org/10.1039/C7CP02514A .
Wang S, Sun P, Zhang R, Lu A, Liu M, Zhang L. Phys Chem Chem Phys , 2017 . 19 ( 11 ): 7486 - 7490 . DOI:10.1039/C6CP08744Bhttp://doi.org/10.1039/C6CP08744B .
Wang Y, Liu L, Chen P, Zhang L, Lu A. Phys Chem Chem Phys , 2018 . 20 ( 20 ): 14223 - 14233 . DOI:10.1039/C8CP01268Ghttp://doi.org/10.1039/C8CP01268G .
Ye D, Cheng Q, Zhang Q, Wang Y, Chang C, Li L, Peng H, Zhang L. ACS Appl Mater Interfaces , 2017 . 9 ( 49 ): 43154 - 43162 . DOI:10.1021/acsami.7b14900http://doi.org/10.1021/acsami.7b14900 .
Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J. Adv Funct Mater , 2016 . 26 ( 34 ): 6279 - 6287 . DOI:10.1002/adfm.201601645http://doi.org/10.1002/adfm.201601645 .
Ye D, Lei X, Li T, Cheng Q, Chang C, Hu L, Zhang L. ACS Nano , 2019 . 13 ( 4 ): 4843 - 4853 . DOI:10.1021/acsnano.9b02081http://doi.org/10.1021/acsnano.9b02081 .
Ye D, Yang P, Lei X, Zhang D, Li L, Chang C, Sun P, Zhang L. Chem Mater , 2018 . 30 ( 15 ): 5175 - 5183 . DOI:10.1021/acs.chemmater.8b01799http://doi.org/10.1021/acs.chemmater.8b01799 .
Ye D, Chang C, Zhang L. Biomacromolecules , 2019 . 20 ( 5 ): 1989 - 1995 . DOI:10.1021/acs.biomac.9b00204http://doi.org/10.1021/acs.biomac.9b00204 .
Zhu K, Qiu C, Lu A, Luo L, Guo J, Cong H, Chen F, Liu X, Zhang X, Wang H, Cai J, Fu Q, Zhang L. ACS Sustain Chem Eng , 2018 . 6 ( 4 ): 5314 - 5321 . DOI:10.1021/acssuschemeng.8b00039http://doi.org/10.1021/acssuschemeng.8b00039 .
Qiu C, Zhu K, Yang W, Wang Y, Zhang L, Chen F, Fu Q. Biomacromolecules , 2018 . 19 ( 11 ): 4386 - 4395 . DOI:10.1021/acs.biomac.8b01262http://doi.org/10.1021/acs.biomac.8b01262 .
Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L. Adv Energy Mater , 2016 . 6 ( 6 ): 1501929 DOI:10.1002/aenm.201501929http://doi.org/10.1002/aenm.201501929 .
Xu D, Fan L, Gao L, Xiong Y, Wang Y, Ye Q, Yu A, Dai H, Yin Y, Cai J, Zhang L. ACS Appl Mater Interfaces , 2016 . 8 ( 27 ): 17090 - 17097 . DOI:10.1021/acsami.6b03555http://doi.org/10.1021/acsami.6b03555 .
Dai L, Zhu W, Lu J, Kong F, Si C, Ni Y. Green Chem , 2019 . 21 ( 19 ): 5222 - 5230 . DOI:10.1039/C1039GC01975Hhttp://doi.org/10.1039/C1039GC01975H .
Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J Am Chem Soc , 2002 . 124 ( 18 ): 4974 - 4975 . DOI:10.1021/ja025790mhttp://doi.org/10.1021/ja025790m .
Zhang H, Wu J, Zhang J, He J. Macromolecules , 2005 . 38 ( 20 ): 8272 - 8277 . DOI:10.1021/ma0505676http://doi.org/10.1021/ma0505676 .
Raghuwanshi V S, Cohen Y, Garnier G, Garvey C J, Russell R A, Darwish T, Garnier G. Macromolecules , 2018 . 51 ( 19 ): 7649 - 7655 . DOI:10.1021/acs.macromol.8b01425http://doi.org/10.1021/acs.macromol.8b01425 .
Liu H, Sale K L, Holmes B M, Simmons B A, Singh S. J Phys Chem B , 2010 . 114 ( 12 ): 4293 - 4301 . DOI:10.1021/jp9117437http://doi.org/10.1021/jp9117437 .
Rabideau B D, Ismail A E. J Phys Chem B , 2012 . 116 ( 32 ): 9732 - 9743 . DOI:10.1021/jp305469phttp://doi.org/10.1021/jp305469p .
Vitz J, Erdmenger T, Haensch C, Schubert U. Green Chem , 2009 . 11 ( 3 ): 417 - 424 . DOI:10.1039/b818061jhttp://doi.org/10.1039/b818061j .
Mazza M, Catana D A, Vaca-Garcia C, Cecutti C J C. Cellulose , 2009 . 16 ( 2 ): 207 - 215 . DOI:10.1007/s10570-008-9257-xhttp://doi.org/10.1007/s10570-008-9257-x .
Wan J, Zhang J, Yu J, Zhang J. ACS Appl Mater Interfaces , 2017 . 9 ( 29 ): 24591 - 24599 . DOI:10.1021/acsami.7b06271http://doi.org/10.1021/acsami.7b06271 .
Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J F. Phys Chem Chem Phys , 2010 . 12 1941 - 1947 . DOI:10.1039/b920446fhttp://doi.org/10.1039/b920446f .
Luo N, Lv Y, Wang D, Zhang J, Wu J, He J, Zhang J. Chem Commun , 2012 . 48 6283 - 6285 . DOI:10.1039/c2cc31483ehttp://doi.org/10.1039/c2cc31483e .
Zhang J, Xu L, Yu J, Wu J, Zhang X, He J, Zhang J. Sci China Chem , 2016 . 59 1421 - 1429 . DOI:10.1007/s11426-016-0269-5http://doi.org/10.1007/s11426-016-0269-5 .
Liu J, Zhang J, Zhang B, Zhang X, Xu L, Zhang J, He J, Liu C Y. Cellulose , 2016 . 23 2341 - 2348 . DOI:10.1007/s10570-016-0967-1http://doi.org/10.1007/s10570-016-0967-1 .
Zhang J, Chen W, Feng Y, Wu J, Yu J, He J, Zhang J. Polym Int , 2015 . 64 963 - 970 . DOI:10.1002/pi.4883http://doi.org/10.1002/pi.4883 .
Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J. Mater Chem Front , 2017 . 1 1273 - 1290 . DOI:10.1039/C6QM00348Fhttp://doi.org/10.1039/C6QM00348F .
Zhang J, Luo N, Zhang X, Xu L, Wu J, Yu J, He J, Zhang J. ACS Sustain Chem Eng , 2016 . 4 ( 8 ): 4417 - 4423 . DOI:10.1021/acssuschemeng.6b01034http://doi.org/10.1021/acssuschemeng.6b01034 .
Mi Q, Ma S-r, Yu J, He J, Zhang J. ACS Sustain Chem Eng , 2016 . 4 656 - 660 . DOI:10.1021/acssuschemeng.5b01079http://doi.org/10.1021/acssuschemeng.5b01079 .
Nguyen N A, Kim K, Bowland C C, Keum J K, Kearney L T, André N, Labbé N, Naskar A K. Green Chem , 2019 . 21 ( 16 ): 4354 - 4367 . DOI:10.1039/C9GC00774Ahttp://doi.org/10.1039/C9GC00774A .
Yang S, Lu X, Zhang Y, Xu J, Xin J, Zhang S. Cellulose , 2018 . 25 ( 6 ): 3241 - 3254 . DOI:10.1007/s10570-018-1785-4http://doi.org/10.1007/s10570-018-1785-4 .
Shamshina J L, Zavgorodnya O, Choudhary H, Frye B, Newbury N, Rogers R D. ACS Sustain Chem Eng , 2018 . 6 ( 11 ): 14713 - 14722 . DOI:10.1021/acssuschemeng.8b03269http://doi.org/10.1021/acssuschemeng.8b03269 .
Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A. Biomacromolecules , 2008 . 10 ( 1 ): 162 - 165.
Nogi M, Iwamoto S, Nakagaito A N, Yano H. Adv Mater , 2009 . 21 ( 16 ): 1595 - 1598 . DOI:10.1002/adma.200803174http://doi.org/10.1002/adma.200803174 .
Ansari F, Salajková M, Zhou Q, Berglund L A. Biomacromolecules , 2015 . 16 3916 - 3924 . DOI:10.1021/acs.biomac.5b01245http://doi.org/10.1021/acs.biomac.5b01245 .
Kang X, Kuga S, Wang C, Zhao Y, Wu M, Huang Y. ACS Sustain Chem Eng , 2018 . 6 ( 3 ): 2954 - 2960 . DOI:10.1021/acssuschemeng.7b02363http://doi.org/10.1021/acssuschemeng.7b02363 .
Kang X, Sun P, Kuga S, Wang C, Zhao Y, Wu M, Huang Y. ACS Sustain Chem Eng , 2017 . 5 ( 3 ): 2529 - 2534 . DOI:10.1021/acssuschemeng.6b02867http://doi.org/10.1021/acssuschemeng.6b02867 .
Ci J, Cao C, Kuga S, Shen J, Wu M, Huang Y. ACS Sustain Chem Eng , 2017 . 5 ( 11 ): 9614 - 9618 . DOI:10.1021/acssuschemeng.7b01970http://doi.org/10.1021/acssuschemeng.7b01970 .
Saito T, Kimura S, Nishiyama Y, Isogai A. Biomacromolecules , 2007 . 8 ( 8 ): 2485 - 2491 . DOI:10.1021/bm0703970http://doi.org/10.1021/bm0703970 .
De France K J, Hoare T, Cranston E D. Chem Mater , 2017 . 29 ( 11 ): 4609 - 4631 . DOI:10.1021/acs.chemmater.7b00531http://doi.org/10.1021/acs.chemmater.7b00531 .
Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L. Nat Nanotechnol , 2014 . 10 277 - 283.
Xiong R, Yu S, Smith M J, Zhou J, Krecker M, Zhang L, Nepal D, Bunning T J, Tsukruk V V. ACS Nano , 2019 . 13 ( 8 ): 9047 - 9081 . DOI:10.1021/acsnano.1029b03305http://doi.org/10.1021/acsnano.1029b03305 .
Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. Biomacromolecules , 2015 . 16 ( 5 ): 1489 - 1496 . DOI:10.1021/acs.biomac.5b00188http://doi.org/10.1021/acs.biomac.5b00188 .
Lundahl M J, Klar V, Wang L, Ago M, Rojas O J. Ind Eng Chem Res , 2017 . 56 ( 1 ): 8 - 19 . DOI:10.1021/acs.iecr.6b04010http://doi.org/10.1021/acs.iecr.6b04010 .
Richardson J J, Tardy B L, Guo J, Liang K, Rojas O J, Ejima H. ACS Sustain Chem Eng , 2019 . 7 ( 6 ): 6287 - 6294 . DOI:10.1021/acssuschemeng.8b06713http://doi.org/10.1021/acssuschemeng.8b06713 .
Voisin H, Bergström L, Liu P, Mathew A P J N. Nanomaterials , 2017 . 7 ( 3 ): 57 DOI:10.3390/nano7030057http://doi.org/10.3390/nano7030057 .
Zheng H, Li W, Li W, Wang X, Tang Z, Zhang S X A, Xu Y. Adv Mater , 2018 . 30 ( 13 ): 1705948 DOI:10.1002/adma.201705948http://doi.org/10.1002/adma.201705948 .
Xu Y, Atrens A D, Stokes J R. Soft Matter , 2019 . 15 ( 8 ): 1716 - 1720 . DOI:10.1039/C8SM02288Ghttp://doi.org/10.1039/C8SM02288G .
Chu G, Qu D, Zussman E, Xu Y. Chem Mater , 2017 . 29 ( 9 ): 3980 - 3988 . DOI:10.1021/acs.chemmater.7b00361http://doi.org/10.1021/acs.chemmater.7b00361 .
Hiratani T, Kose O, Hamad W Y, MacLachlan M J. Mater Horiz , 2018 . 5 ( 6 ): 1076 - 1081 . DOI:10.1039/C8MH00586Ahttp://doi.org/10.1039/C8MH00586A .
Kaushik M, Basu K, Benoit C, Cirtiu C M, Vali H, Moores A. J Am Chem Soc , 2015 . 137 ( 19 ): 6124 - 6127 . DOI:10.1021/jacs.5b02034http://doi.org/10.1021/jacs.5b02034 .
Gu J, Hu C, Zhang W, Dichiara A B. Appl Catal B , 2018 . 237 482 - 490 . DOI:10.1016/j.apcatb.2018.06.002http://doi.org/10.1016/j.apcatb.2018.06.002 .
Ellebracht N C, Jones C W. ACS Catal , 2019 . 9 ( 4 ): 3266 - 3277 . DOI:10.1021/acscatal.8b05180http://doi.org/10.1021/acscatal.8b05180 .
Qin X, Xia W, Sinko R, Keten S. Nano Lett , 2015 . 15 ( 10 ): 6738 - 6744 . DOI:10.1021/acs.nanolett.5b02588http://doi.org/10.1021/acs.nanolett.5b02588 .
Biswas S K, Tanpichai S, Witayakran S, Yang X, Shams M I, Yano H. ACS Nano , 2019 . 13 ( 2 ): 2015 - 2023.
Zhu L, Zhou X, Liu Y, Fu Q. ACS Appl Mater Interfaces , 2019 . 11 ( 13 ): 12968 - 12977 . DOI:10.1021/acsami.9b00136http://doi.org/10.1021/acsami.9b00136 .
Wu K, Fang J, Ma J, Huang R, Chai S, Chen F, Fu Q. ACS Appl Mater Interfaces , 2017 . 9 ( 35 ):30035 - 30045 . DOI:10.1021/acsami.7b08214http://doi.org/10.1021/acsami.7b08214 .
Yang W, Zhang Y, Liu T, Huang R, Chai S, Chen F, Fu Q. ACS Sustain Chem Eng , 2017 . 5 ( 10 ): 9102 - 9113 . DOI:10.1021/acssuschemeng.7b02012http://doi.org/10.1021/acssuschemeng.7b02012 .
Cheng Q, Ye D, Chang C, Zhang L. J Membr Sci , 2017 . 525 1 - 8 . DOI:10.1016/j.memsci.2016.11.084http://doi.org/10.1016/j.memsci.2016.11.084 .
Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C. ACS Nano , 2018 . 12 ( 5 ): 4462 - 4468 . DOI:10.1021/acsnano.8b00566http://doi.org/10.1021/acsnano.8b00566 .
Zhu H, Yang X, Cranston E D, Zhu S. Adv Mater , 2016 . 28 ( 35 ): 7652 - 7657 . DOI:10.1002/adma.201601351http://doi.org/10.1002/adma.201601351 .
Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y, Gong A, Leiste U H, Bruck H A, Zhu J Y, Vellore A, Li H, Minus M L, Jia Z, Martini A, Li T, Hu L. Nature , 2018 . 554 ( 7691 ): 224 - 228 . DOI:10.1038/nature25476http://doi.org/10.1038/nature25476 .
Gan W, Chen C, Wang Z, Song J, Kuang Y, He S, Mi R, Sunderland P B, Hu L. Adv Funct Mater , 2019 . 29 ( 14 ): 1807444 DOI:10.1002/adfm.201807444http://doi.org/10.1002/adfm.201807444 .
Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L. Science , 2019 . 364 ( 6442 ): 760 - 763 . DOI:10.1126/science.aau9101http://doi.org/10.1126/science.aau9101 .
Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L. Energy Environ Sci , 2017 . 10 538 - 545 . DOI:10.1039/C6EE03716Jhttp://doi.org/10.1039/C6EE03716J .
Song H, Xu S, Li Y, Dai J, Hu L. Adv Energy Mater , 2017 . 8 ( 4 ): 1701203 .
Xu S, Chen C, Kuang Y, Song J, Gan W, Liu B, Hitz E M, Connell J W, Lin Y, Hu L. Energy Environ Sci , 2018 . 11 ( 11 ): 3231 - 3237 . DOI:10.1039/C8EE01468Jhttp://doi.org/10.1039/C8EE01468J .
He S, Chen C, Kuang Y, Mi R, Liu Y, Pei Y, Kong W, Gan W, Xie H, Hitz E, Jia C, Chen X, Gong A, Liao J, Li J, Ren Z J, Yang B, Das S, Hu L. Energy Environ Sci , 2019 . 12 ( 5 ): 1558 - 1567 . DOI:10.1039/C9EE00945Khttp://doi.org/10.1039/C9EE00945K .
Li T, Liu H, Zhao X, Chen G, Dai J, Pastel G, Jia C, Chen C, Hitz E, Siddhartha D, Yang R, Hu L. Adv Funct Mater , 2018 . 28 ( 16 ): 1707134 DOI:10.1002/adfm.201707134http://doi.org/10.1002/adfm.201707134 .
Zhu M, Li Y, Chen G, Jiang F, Yang Z, Luo X, Wang Y, Lacey S D, Dai J, Wang C, Jia C, Wan J, Yao Y, Gong A, Yang B, Yu Z, Das S, Hu L. Adv Mater , 2017 . 29 ( 44 ): 1704107 DOI:10.1002/adma.201704107http://doi.org/10.1002/adma.201704107 .
Kuang Y, Chen C, He S, Hitz E M, Wang Y, Gan W, Mi R, Hu L. Adv Mater , 2019 . 31 ( 23 ): 1900498 .
Picheth G F, Pirich C L, Sierakowski M R, Woehl M A, Sakakibara C N, de Souza C F, Martin A A, da Silva R, de Freitas R A. Int J Biol Macromol , 2017 . 104 97 - 106 . DOI:10.1016/j.ijbiomac.2017.05.171http://doi.org/10.1016/j.ijbiomac.2017.05.171 .
Foresti M L, Vázquez A, Boury B. Carbohydr Polym , 2017 . 157 447 - 467 . DOI:10.1016/j.carbpol.2016.09.008http://doi.org/10.1016/j.carbpol.2016.09.008 .
Wu Z Y, Liang H W, Chen L F, Hu B C, Yu S H. Acc Chem Res , 2016 . 49 ( 1 ): 96 - 105 . DOI:10.1021/acs.accounts.5b00380http://doi.org/10.1021/acs.accounts.5b00380 .
Chen Z, Hu Y, Zhuo H, Liu L, Jing S, Zhong L, Peng X, Sun R C. Chem Mater , 2019 . 31 3301 - 3312 . DOI:10.1021/acs.chemmater.9b00259http://doi.org/10.1021/acs.chemmater.9b00259 .
Wang S, Jiang F, Xu X, Kuang Y, Fu K, Hitz E, Hu L. Adv Mater , 2017 . 29 ( 35 ): 1702498 DOI:10.1002/adma.201702498http://doi.org/10.1002/adma.201702498 .
Liang H W, Wu Z Y, Chen L F, Li C, Yu S H. Nano Energy , 2015 . 11 366 - 376 . DOI:10.1016/j.nanoen.2014.11.008http://doi.org/10.1016/j.nanoen.2014.11.008 .
Guan Q F, Han Z M, Luo T T, Yang H B, Liang H W, Chen S M, Wang G S, Yu S H J N S R. Natl Sci Rev , 2019 . 6 ( 1 ): 64 - 73 . DOI:10.1093/nsr/nwy144http://doi.org/10.1093/nsr/nwy144 .
Yang J, Wang L, Zhang W, Sun Z, Li Y, Yang M, Zeng D, Peng B, Zheng W, Jiang X, Yang G. Small , 2018 . 14 ( 7 ): 1702582 DOI:10.1002/smll.201702582http://doi.org/10.1002/smll.201702582 .
Geisel N, Clasohm J, Shi X, Lamboni L, Yang J, Mattern K, Yang G, Schäfer K H, Saumer M. Small , 2016 . 12 ( 39 ): 5407 - 5413.
Schaffner M, Rühs P A, Coulter F, Kilcher S, Studart A. Sci Adv , 2017 . 3 6804 DOI:10.1126/sciadv.aao6804http://doi.org/10.1126/sciadv.aao6804 .
Yang J, Du M, Wang L, Li S, Wang G, Yang X, Zhang L, Fang Y, Zheng W, Yang G, Jiang X. ACS Appl Mater Interfaces , 2018 . 10 ( 39 ): 33049 - 33059 . DOI:10.1021/acsami.8b12083http://doi.org/10.1021/acsami.8b12083 .
Shi Z, Gao X, Ullah M W, Li S, Wang Q, Yang G. Biomaterials , 2016 . 111 40 - 54 . DOI:10.1016/j.biomaterials.2016.09.020http://doi.org/10.1016/j.biomaterials.2016.09.020 .
Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Shen Y. Adv Energy Mater , 2014 . 4 ( 10 ): 1301655 DOI:10.1002/aenm.201301655http://doi.org/10.1002/aenm.201301655 .
Li S, Huang D, Yang J, Zhang B, Zhang X, Yang G, Wang M, Shen Y. Nano Energy , 2014 . 9 309 - 317 . DOI:10.1016/j.nanoen.2014.08.004http://doi.org/10.1016/j.nanoen.2014.08.004 .
Li Y, Tian Y, Zheng W, Feng Y, Huang R, Shao J, Tang R, Wang P, Jia Y, Zhang J, Zheng W, Yang G, Jiang X. Small , 2017 . 13 ( 27 ): 1700130 DOI:10.1002/smll.201700130http://doi.org/10.1002/smll.201700130 .
Zhang B, Zhou J, Li S, Zhang X, Huang D, He Y, Wang M, Yang G, Shen Y. Talanta , 2015 . 131 243 - 248 . DOI:10.1016/j.talanta.2014.07.027http://doi.org/10.1016/j.talanta.2014.07.027 .
0
Views
205
下载量
20
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution