浏览全部资源
扫码关注微信
1.扬州大学化学化工学院 扬州 225002
2.扬州大学测试中心 扬州 225009
Published:2020-5,
Published Online:9 April 2020,
Received:13 January 2020,
Revised:16 February 2020,
扫 描 看 全 文
Chuan-qiang Zhou, Jie Han, Rong Guo. Controllable Synthesis and Catalysis Application of Conducting Polymer/Noble Metal Nanoparticle Hybrids. [J]. Acta Polymerica Sinica 51(5):517-529(2020)
Chuan-qiang Zhou, Jie Han, Rong Guo. Controllable Synthesis and Catalysis Application of Conducting Polymer/Noble Metal Nanoparticle Hybrids. [J]. Acta Polymerica Sinica 51(5):517-529(2020) DOI: 10.11777/j.issn1000-3304.2020.20010.
导电高分子/贵金属复合纳米材料因其在催化、传感、表面增强拉曼、光热治疗等诸多领域的应用前景而受到广泛关注. 本文主要介绍我们课题组近年来利用可控合成策略制备的负载型和包埋型两种结构聚苯胺/贵金属复合纳米材料,以及利用复合纳米材料的结构和功能特性,对其在多相催化领域的应用、结构与催化性能之间构效关系的探索.
Conducting polymer/noble metal nanoparticle hybrids have aroused increasing interest due to their potential application in fields of catalysis
sensing
surface-enhanced Raman
photo-thermal therapy and so on. The incorporation of conducting polymers with noble metal nanoparticles can produce new hybrids showing distinct properties that are not observed in the individual components. In general
the strategies in the synthesis of conducting polymer/noble metal nanoparticle hybrids involve the direct mixing of conducting polymers and noble metal nanoparticles
redox reaction between conducting polymers and noble metal ions
redox reaction between aniline monomers and noble metal ions
as well as aniline monomer polymerization in the presence of noble metal nanoparticles. Noble metal nanoparticles are either supported on surfaces of conducting polymer nanostructures or embedded in conducting polymer matrix. Our research focuses on the controllable synthesis of polyaniline/noble metal nanoparticle hybrids with compact interactions
which will show potential application as advanced nanocatalysts in diverse catalytic reactions. This fearfure artcle aims at reviewing our work in recent years on the synthetic strategies and catalysis application of polyaniline/noble metal nanoparticle hybrids. The supported polyaniline/noble metal nanoparticle hybrids can be synthesized through the redox reaction between polyaniline and noble metal ion
where the configuration of hybrids and size of supported noble metal nanoparticles are determined by polyaniline nanostructures and functional doping acids. The embedded polyaniline/noble metal nanoparticle hybrids can be synthesized through the redox reaction between aniline monomer and noble metal ion
where the functional substituents in aniline monomer play the determining role in reducing the size of noble metal nanoparticles in hybrids. In addition
the polymerization of aniline monomer on surfaces of noble metal nanoparticles can also lead to embedded polyaniline/noble metal nanoparticle hybrids with compact interaction. Polyaniline/noble metal nanoparticle hybrids have been successfully applied as nanocatalysts in nitrophenol reduction
alcohol oxidation
Suzuki-Miyaura cross-coupling
and Ullmann reactions. In particular
a novel yolk-in-shell nanostructure of polyaniline/Au hybrids have been emphasized and the synergistic catalytic effect of polyaniline for Au nanoparticles has been discussed.
导电高分子聚苯胺贵金属纳米粒子复合材料催化
Conducting polymerPolyanilineNoble metal nanoparticleHybridCatalysis
Kang E T, Neoh K G, Tan K L. Prog Polym Sci , 1997 . 23 277 - 324.
Bhadra S, Khastgir D, Singha N K, Lee J H. Prog Polym Sci , 2009 . 34 783 - 810 . DOI:10.1016/j.progpolymsci.2009.04.003http://doi.org/10.1016/j.progpolymsci.2009.04.003 .
Palaniappan S, John A P. Prog Polym Sci , 2008 . 33 732 - 758 . DOI:10.1016/j.progpolymsci.2008.02.002http://doi.org/10.1016/j.progpolymsci.2008.02.002 .
Stejskal J, Sapurina I, Trchová M. Prog Polym Sci , 2010 . 35 1420 - 1481 . DOI:10.1016/j.progpolymsci.2010.07.006http://doi.org/10.1016/j.progpolymsci.2010.07.006 .
Laslau C, Zujovic Z, Travas-Sejdic J. Prog Polym Sci , 2010 . 35 1403 - 1419 . DOI:10.1016/j.progpolymsci.2010.08.002http://doi.org/10.1016/j.progpolymsci.2010.08.002 .
Long Y Z, Li M M, Gu C, Wan M X, Duvail J L, Liu Z, Fan Z. Prog Polym Sci , 2011 . 36 1415 - 1442 . DOI:10.1016/j.progpolymsci.2011.04.001http://doi.org/10.1016/j.progpolymsci.2011.04.001 .
Hatchett D W, Josowicz M. Chem Rev , 2008 . 108 746 - 769 . DOI:10.1021/cr068112hhttp://doi.org/10.1021/cr068112h .
Du Y, Shen S Z, Cai K, Casey P S. Prog Polym Sci , 2012 . 37 820 - 841 . DOI:10.1016/j.progpolymsci.2011.11.003http://doi.org/10.1016/j.progpolymsci.2011.11.003 .
Oueiny C, Berlioz S, Perrin F X. Prog Polym Sci , 2014 . 39 707 - 748 . DOI:10.1016/j.progpolymsci.2013.08.009http://doi.org/10.1016/j.progpolymsci.2013.08.009 .
Janáky C, Rajeshwar K. Prog Polym Sci , 2015 . 43 96 - 135 . DOI:10.1016/j.progpolymsci.2014.10.003http://doi.org/10.1016/j.progpolymsci.2014.10.003 .
Yang X, Yang M, Pang B, Vara M, Xia Y. Chem Rev , 2015 . 115 10410 - 88 . DOI:10.1021/acs.chemrev.5b00193http://doi.org/10.1021/acs.chemrev.5b00193 .
Stratakis M, Garcia H. Chem Rev , 2012 . 112 4469 - 4506 . DOI:10.1021/cr3000785http://doi.org/10.1021/cr3000785 .
Han J, Wang M G, Hu Y M, Zhou C Q, Guo R. Prog Polym Sci , 2017 . 70 52 - 91 . DOI:10.1016/j.progpolymsci.2017.04.002http://doi.org/10.1016/j.progpolymsci.2017.04.002 .
Han J, Li L, Guo R. Macromolecules , 2010 . 43 10636 - 10644 . DOI:10.1021/ma102251ehttp://doi.org/10.1021/ma102251e .
Han J, Dai J, Zhou C Q, Guo R. Polym Chem , 2013 . 4 313 - 321 . DOI:10.1039/C2PY20536Jhttp://doi.org/10.1039/C2PY20536J .
Han J, Liu Y, Guo R. Adv Funct Mater , 2009 . 19 1112 - 1117 . DOI:10.1002/adfm.200801018http://doi.org/10.1002/adfm.200801018 .
Han J, Liu Y, Li L Y, Guo R. Langmuir , 2009 . 25 11054 - 11060 . DOI:10.1021/la901373thttp://doi.org/10.1021/la901373t .
Han J, Song G P, Guo R. Adv Mater , 2006 . 18 3140 - 3144 . DOI:10.1002/adma.200600282http://doi.org/10.1002/adma.200600282 .
Han J, Song G P, Guo R. Chem Mater , 2007 . 19 973 - 975 . DOI:10.1021/cm062686lhttp://doi.org/10.1021/cm062686l .
Han J, Song G P, Guo R. J Polym Sci, Part A: Polym Chem , 2007 . 45 2638 - 2645 . DOI:10.1002/pola.22023http://doi.org/10.1002/pola.22023 .
Han J, Wang L, Guo R. Macromol Rapid Commun , 2011 . 32 729 - 735 . DOI:10.1002/marc.201000780http://doi.org/10.1002/marc.201000780 .
Han J, Wang L, Guo R. J Mater Chem , 2012 . 22 5932 - 5935 . DOI:10.1039/c2jm16583jhttp://doi.org/10.1039/c2jm16583j .
Han J, Lu S, Jin C J, Wang M G, Guo R. J Mater Chem A , 2014 . 2 13016 - 13023 . DOI:10.1039/C4TA01795Ahttp://doi.org/10.1039/C4TA01795A .
Han J, Liu Y, Wang L, Guo R. J Polym Sci, Part A: Polym Chem , 2010 . 48 3903 - 3912 . DOI:10.1002/pola.24177http://doi.org/10.1002/pola.24177 .
Wang J, Han J, Zhu C H, Han N, Xi J Q, Fan L, Guo R. Langmuir , 2018 . 34 14661 - 14669 . DOI:10.1021/acs.langmuir.8b02667http://doi.org/10.1021/acs.langmuir.8b02667 .
Wang J, Zhu C H, Han J, Han N, Xi J Q, Fan L, Guo R. ACS Appl Mater Interfaces , 2018 . 10 12323 - 12330 . DOI:10.1021/acsami.7b16784http://doi.org/10.1021/acsami.7b16784 .
Han J, Chen R, Wang M G, Lu S, Guo R. Chem Commun , 2013 . 49 11566 - 11568 . DOI:10.1039/c3cc46139dhttp://doi.org/10.1039/c3cc46139d .
Han J, Wang M G, Chen R, Han N, Guo R. Chem Commun , 2014 . 50 8295 - 8298 . DOI:10.1039/C4CC01532Khttp://doi.org/10.1039/C4CC01532K .
Han J, Liu Y, Guo R. J Polym Sci, Part A: Polym Chem , 2008 . 46 740 - 746 . DOI:10.1002/pola.22459http://doi.org/10.1002/pola.22459 .
Han J, Song G P, Guo R. Eur Polym J , 2007 . 43 4229 - 4235 . DOI:10.1016/j.eurpolymj.2007.06.012http://doi.org/10.1016/j.eurpolymj.2007.06.012 .
Han J, Fang P, Dai J, Guo R. Langmuir , 2012 . 28 6468 - 6475 . DOI:10.1021/la300619dhttp://doi.org/10.1021/la300619d .
Han J, Liu Y, Guo R. J Am Chem Soc , 2009 . 131 2060 - 2061 . DOI:10.1021/ja808935nhttp://doi.org/10.1021/ja808935n .
Han J, Dai J, Li L Y, Fang P, Guo R. Langmuir , 2011 . 27 2181 - 2187 . DOI:10.1021/la200256jhttp://doi.org/10.1021/la200256j .
Han J, Fang P, Jiang W J, Li L Y, Guo R. Langmuir , 2012 . 28 4768 - 4775 . DOI:10.1021/la204503bhttp://doi.org/10.1021/la204503b .
Hervés P, Pérez-Lorenzo M, Liz-Marzán L M, Dzubiella J, Lu Y, Ballauff M. Chem Soc Rev , 2012 . 41 5577 - 5587 . DOI:10.1039/c2cs35029ghttp://doi.org/10.1039/c2cs35029g .
Ishida T, Haruta M. Angew Chem Int Ed , 2007 . 46 7154 - 7156 . DOI:10.1002/anie.200701622http://doi.org/10.1002/anie.200701622 .
Jin C J, Qu Y, Wang M G, Han J, H u, Y M, Guo R. Langmuir , 2016 . 32 4595 - 4601 . DOI:10.1021/acs.langmuir.6b01269http://doi.org/10.1021/acs.langmuir.6b01269 .
Li Y N, Jin C J, Yuan G Y, Han J, Wang M G, Guo R. Langmuir , 2017 . 33 7486 - 7493 . DOI:10.1021/acs.langmuir.7b01742http://doi.org/10.1021/acs.langmuir.7b01742 .
Jin C J, Han J, Chu F Y, Wang X X, Guo R. Langmuir , 2017 . 33 4520 - 4527 . DOI:10.1021/acs.langmuir.7b00640http://doi.org/10.1021/acs.langmuir.7b00640 .
Chen Y, Li L Y, Zhang L, Han J. Colloid Polym Sci , 2018 . 296 567 - 574 . DOI:10.1007/s00396-018-4276-0http://doi.org/10.1007/s00396-018-4276-0 .
Chen Y, Lu S, Liu W J, Han J. Colloid Polym Sci , 2015 . 293 2301 - 2309 . DOI:10.1007/s00396-015-3619-3http://doi.org/10.1007/s00396-015-3619-3 .
Wang Q, Jing X B, Han J, Yu L, Xu Q. Mater Lett , 2018 . 215 65 - 67 . DOI:10.1016/j.matlet.2017.12.064http://doi.org/10.1016/j.matlet.2017.12.064 .
Liu Y H, Tang D L, Cao K H, Yu L, Han J, Xu Q. J Catal , 2018 . 360 250 - 260 . DOI:10.1016/j.jcat.2018.01.026http://doi.org/10.1016/j.jcat.2018.01.026 .
Chen Y, Wang M G, Zhang L, Liu Y, Han J. RSC Adv , 2017 . 7 47104 - 47110 . DOI:10.1039/C7RA09947Ahttp://doi.org/10.1039/C7RA09947A .
Zhou C Q, Ren Y Y, Han J, Gong X X, Wei Z X, Xie J, Guo R. J Am Chem Soc , 2018 . 140 9417 - 9425 . DOI:10.1021/jacs.7b12178http://doi.org/10.1021/jacs.7b12178 .
Zhou C Q, Ren Y Y, Han J, Xu Q Q, Guo R. ACS Nano , 2019 . 13 3534 - 354446 . DOI:10.1021/acsnano.8b09784http://doi.org/10.1021/acsnano.8b09784 .
0
Views
46
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution