Dynamic reversible covalent bonds introduced into the polymer networks enable the materials to undergo structural rearrangement and obtain processability under suitable conditions
endowing it with considerable applications in polymeric materials. In this work
particle-crosslinked vitrimer and molecular cross-linked vitrimer were obtained through the crosslinking reaction between carboxy-terminated liquid polybutadiene rubber and epoxy-containing crosslinkers (molecular crosslinker and nano-particle crosslinker). The reversibility and reprocessability of crosslinked polymer were proved by stress relaxation and melt remolding. Furthermore
linear and nonlinear dynamic rheology were used to study the influences of the size differences of crosslinker on the dynamic characteristics of vitrimer composites. In linear rheology
the double relaxation processes in dynamically cross-linked systems were observed
where fast relaxation process at high frequencies could be attributed to the contribution of the pendant chain. In contrast to the molecular cross-linked system
whose terminal relaxation was determined by the scission of active network strands
the terminal relaxation of particle cross-linked system was due to particle diffusion out of particles cage. The reversible covalent network had a weaker contribution to the modulus as compared to the particles’ contribution
but greatly slowed down the particle diffusion. In nonlinear oscillatory rheology
the comparison of Lissajous curves and strain overshoot of loss modulus among particle-crosslinked vitrimer
molecular crosslinked vitrimer and particle-filled polymer composites also verified the above results.
Capelot M, Unterlass M M, Tournilhac F, Leibler L. ACS Macro Lett , 2012 . 1 ( 7 ): 789 - 792 . DOI:10.1021/mz300239fhttp://doi.org/10.1021/mz300239f .
Capelot M, Montarnal D, Tournilhac F, Leibler L. J Am Chem Soc , 2012 . 134 ( 18 ): 7664 - 7667 . DOI:10.1021/ja302894khttp://doi.org/10.1021/ja302894k .
Chakma P, Konkolewicz D. Angew Chem Int Ed , 2019 . 58 ( 29 ): 9682 - 9695 . DOI:10.1002/anie.201813525http://doi.org/10.1002/anie.201813525 .
Pei Z Q, Yang Y, Chen Q M, Terentjev E M, Wei Y, Ji Y. Nat Mater , 2014 . 13 ( 1 ): 36 - 41 . DOI:10.1038/nmat3812http://doi.org/10.1038/nmat3812 .
Legrand A, Soulié-Ziakovic C. Macromolecules , 2016 . 49 ( 16 ): 5893 - 5902 . DOI:10.1021/acs.macromol.6b00826http://doi.org/10.1021/acs.macromol.6b00826 .
Huang Z W, Wang Y, Zhu J, Yu J R, Hu Z M. Compos Sci Techol , 2018 . 154 18 - 27 . DOI:10.1016/j.compscitech.2017.11.006http://doi.org/10.1016/j.compscitech.2017.11.006 .
Mark J E. Physical Properties of Polymers Handbook. Berlin: Springer, 2006
Woodcock L V. Lecture Notes in Physics. Berlin: Springer, 1985
Torquato S, Lu B, Rubinstein J. Phys Rev A , 1990 . 41 ( 4 ): 2059 - 2075 . DOI:10.1103/PhysRevA.41.2059http://doi.org/10.1103/PhysRevA.41.2059 .
You W, Yu W. Macromolecules , 2019 . 52 ( 23 ): 9094 - 9104 . DOI:10.1021/acs.macromol.9b01538http://doi.org/10.1021/acs.macromol.9b01538 .
Batchelor G K, Green J T. J Fluid Mech , 1972 . 56 ( 2 ): 375 - 400 . DOI:10.1017/S0022112072002927http://doi.org/10.1017/S0022112072002927 .