The copolymerization of isoprene and styrene derivatives such as
p
-chlorostyrene (St-Cl) and 4-dimethylsilyl styrene (St-SiHMe
2
) catalyzed by the half-sandwich scandium complex (C
5
Me
4
SiMe
3
)Sc-(CH
2
C
6
H
4
NMe
2
-
o
)
2
have been studied in this paper. The microstructures and thermal properties of the obtained copolymers were characterized by NMR
GPC and DSC. These results showed that the IP/St-Cl and IP/St-SiHMe
2
copolymers with controllable IP content (21 mol% − 95 mol%)
high molecular weight (
M
n
= 3.1 × 10
4
− 15.9 × 10
4
) and narrow molecular weight distribution (
M
w
/
M
n
= 1.21 − 1.92) were conveniently obtained by changing the feed ratio of IP to styrene derivatives in chlorobenzene at room temperature
in which IP was in 1
4- and 3
4-structure units and the styrene derivatives had a syndiotactic structure. The electronegativity of substituents on the styrene derivatives directly affected the copolymerization activity and the comonomer distribution sequences in the resulting copolymers. The copolymerization activity of IP and St-SiHMe
2
(10
5
g polymer mol
Sc
−1
h
−1
) was much higher than that of the copolymerization of IP and St-Cl (10
4
g polymer mol
Sc
−1
h
−1
)
and the incorporation content of St-SiHMe
2
was also higher than that of St-Cl under the same conditions. The copolymerization of IP and St-Cl afforded gradient copolymers with a glass transition temperature (
T
g
= −1 − 5 °C) originating from poly(IP) segment and a melting point (
T
m
= 314 − 318 °C) originating from syndiotactic poly(St-Cl) segment. The copolymerization of IP and St-SiHMe
2
afforded the random copolymers with a single
T
g
(12 − 82 °C) which increased with the enhance of St-SiHMe
Ban H T, Tsunogae Y, Shiono T. J Polym Sci, Part A: Polym Chem , 2004 . 42 ( 11 ): 2698 - 2704 . DOI:10.1002/pola.20144http://doi.org/10.1002/pola.20144 .
Ban H T, Kase T, Kawabe M, Miyazawa A, Ishihara T, Hagihara H, Tsunogae Y, Murata M, Shiono T. Macromolecules , 2006 . 39 ( 1 ): 171 - 176 . DOI:10.1021/ma051576hhttp://doi.org/10.1021/ma051576h .
Milione S, Cuomo C, Capacchione C, Zannoni C, Grassi A, Proto A. Macromolecules , 2007 . 40 ( 16 ): 5638 - 5643 . DOI:10.1021/ma070543uhttp://doi.org/10.1021/ma070543u .
Proto A, Avagliano A, Saviello D, Ricciardi R, Capacchione C. Macromolecules , 2010 . 43 ( 14 ): 5919 - 5921 . DOI:10.1021/ma101246xhttp://doi.org/10.1021/ma101246x .
Zhang H, Luo Y, Hou Z. Macromolecules , 2008 . 41 ( 4 ): 1064 - 1066 . DOI:10.1021/ma7027006http://doi.org/10.1021/ma7027006 .
Valente A, Stoclet G, Bonnet F, Mortreux A, Visseaux M, Zinck P. Angew Chem Int Ed , 2014 . 53 ( 18 ): 4638 - 4641 . DOI:10.1002/anie.201311057http://doi.org/10.1002/anie.201311057 .
Pan L, Zhang K, Nishiura M, Hou Z. Angew Chem Int Ed , 2011 . 50 ( 50 ): 12012 - 12015 . DOI:10.1002/anie.201104011http://doi.org/10.1002/anie.201104011 .
Ishizone T, Hirao A, Nakahama S. Macromolecules , 1993 . 26 ( 25 ): 6964 - 6975 . DOI:10.1021/ma00077a039http://doi.org/10.1021/ma00077a039 .
Tiedemann P, Blankenburg J, Maciol K, Johann T, Muller H E A, Frey H. Macromolecules , 2019 . 52 ( 3 ): 796 - 806 . DOI:10.1021/acs.macromol.8b02280http://doi.org/10.1021/acs.macromol.8b02280 .
Buonerba A, Fienga M, Milione S, Cuomo C, Grassi A, Proto A, Capacchione C. Macromolecules , 2013 . 46 ( 21 ): 8449 - 8457 . DOI:10.1021/ma401621vhttp://doi.org/10.1021/ma401621v .
Shi Z H, Guo F, Meng R, Jiang L, Li Y. Polym Chem , 2016 . 7 ( 48 ): 7365 - 7369 . DOI:10.1039/C6PY01562Jhttp://doi.org/10.1039/C6PY01562J .
Guo F, Jiao N, Jiang L, Li Y, Hou Z. Macromolecules , 2017 . 50 ( 21 ): 8398 - 8405 . DOI:10.1021/acs.macromol.7b01668http://doi.org/10.1021/acs.macromol.7b01668 .
Guo F, Wang B, Ma H, Li T, Li Y. J Polym Sci, Part A: Polym Chem , 2016 . 54 ( 6 ): 735 - 739 . DOI:10.1002/pola.27923http://doi.org/10.1002/pola.27923 .