浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200438
Published:15 August 2020,
Published Online:27 May 2020,
Received:9 March 2020,
Revised:3 April 2020,
扫 描 看 全 文
Hui-yun Jin, Jin-kang Dou, Jia-yin Xu, Xia-yun Huang, Dao-yong Chen. Prohibition of Interchain Cross-linking by H-bonding Grafting of the Polymer Chain. [J]. Acta Polymerica Sinica 51(9):1021-1028(2020)
Hui-yun Jin, Jin-kang Dou, Jia-yin Xu, Xia-yun Huang, Dao-yong Chen. Prohibition of Interchain Cross-linking by H-bonding Grafting of the Polymer Chain. [J]. Acta Polymerica Sinica 51(9):1021-1028(2020) DOI: 10.11777/j.issn1000-3304.2020.20061.
当三嵌段聚合物的中间嵌段较长时,要在较高的聚合物浓度(例如:2.0 mg/mL)下交联该中间嵌段,得到纯的中间嵌段链内塌缩的聚合物单链粒子是相对困难的. 其在交联过程中容易发生链间交联. 因此,开发可有效抑制链间交联的方法是实现在较高聚合物浓度下制备较高纯度单链粒子的关键. 选用中间嵌段较长的聚苯乙烯-
b
-聚(2-乙烯基吡啶)-
b
-聚环氧乙烷(PS
1596
-
b
-P2VP
2895
-
b
-PEO
726
;下标是对应嵌段的聚合度),通过在其共同溶剂
N
N
-二甲基甲酰胺中利用1
4-二溴丁烷交联其中间P2VP嵌段,制备出该中间嵌段链内塌缩的单链聚合物粒子. 为了抑制链间交联,首先对交联反应的条件(如前驱体浓度、交联剂用量等)进行了优化,可使得高纯度单链粒子的制备浓度达到0.5 mg/mL. 在此基础上,利用硬脂酸(SA)在P2VP嵌段氢键接枝的方法可进一步抑制链间交联,使得较高纯度单链粒子的制备浓度提高至2.0 mg/mL. SA的氢键接枝显著降低了交联过程中P2VP链间碰触概率,从而抑制链间交联反应的发生. 同时,由于其可逆特性,SA对P2VP的氢键接枝不会对单链粒子的结构与组成产生显著影响.
It is difficult to intramolcularly cross-link the relatively long middle block of the triblock copolymer to obtain pure polymeric single-chain particles at a relatively high concentration (
i.e
. 2.0 mg/mL). The polymer is prone to intermolecular cross-linking during the cross-linking process. Hence
developing an effective approach to suppress the intermolecular cross-linking of the polymer helps to obtain the high purity polymeric single-chain particles at a relatively high concentration. The triblock copolymer
polystyrene-
b
-poly(2-vinylpyridine)-
b
-polyethylene oxide (PS
1596
-
b
-P2VP
2895
-
b
-PEO
726
the subscript is the corresponding degree of polymerization)
was chosen
in which the polymer has a relatively long P2VP block. The single-chain particles were prepared by intramolecularly crosslinking the middle block using 1
4-dibromobutane in the common solvent
N
N
-dimethylforamide. In order to efficiently suppress the interchain cross-linking
the cross-linking reaction conditions were firstly optimized
such as precursor concentration
amount of cross-linking agent
etc
to increase the preparation concentration of high purity single-chain particles to 0.5 mg/mL. Moreover
stearic acids (SA) were added to graft on the P2VP block
via
hydrogen bonding interaction before crosslinking. During the single-chain cross-linking procedure
the interchain cross-linking can be further suppressed and the preparation concentration of high purity single-chain particles can increase to 2.0 mg/mL. It is because the SA grafting on the P2VP blocks significantly reduced the contact probability between P2VP chains and thereby the occurrence of interchain cross-linking was inhibited. In addition
since the hydrogen bonding interaction is a noncovalent and reversible interaction
the existence of SA grafts will not have a significant influence on the structure and composition of the single-chain particles.
聚合物单链粒子链内交联氢键接枝三嵌段聚合物
Polymeric single-chain particleIntrachain cross-linkingH-bonding graftingTriblock copolymers
Harth E, van Horn B, Lee V Y, Germack D S, Gonzales C P, Miller R D, Hawker C J. J Am Chem Soc , 2002 . 124 8653 - 8660 . DOI:10.1021/ja026208xhttp://doi.org/10.1021/ja026208x .
Hanlon A M, Lyon C K, Berda E B. Macromolecules , 2016 . 49 2 - 14 . DOI:10.1021/acs.macromol.5b01456http://doi.org/10.1021/acs.macromol.5b01456 .
Mackay M E, Tuteja A, Duxbury P M, Hawker C J, van Horn B, Guan Z B, Chen G H, Krishnan R S. Science , 2006 . 311 1740 - 1743 . DOI:10.1126/science.1122225http://doi.org/10.1126/science.1122225 .
Mackay M E, Dao T T, Tuteja A, Ho D L, van Horn B, Kim H C, Hawker C J. Nat Mater , 2003 . 2 762 - 766 . DOI:10.1038/nmat999http://doi.org/10.1038/nmat999 .
Liu Y L, Pujals S, Stals P J M, Paulohrl T, Presolski S I, Meijer E W, Albertazzi L, Palmans A R A. J Am Chem Soc , 2018 . 140 3423 - 3433 . DOI:10.1021/jacs.8b00122http://doi.org/10.1021/jacs.8b00122 .
Terashima T, Mes T, De Greef T F A, Gillissen M A J, Besenius P, Palmans A R A, Meijer E W. J Am Chem Soc , 2011 . 133 4742 - 4745 . DOI:10.1021/ja2004494http://doi.org/10.1021/ja2004494 .
Giuseppone N, Lutz J F. Nature , 2011 . 473 40 - 41 . DOI:10.1038/473040ahttp://doi.org/10.1038/473040a .
Sanchez-Sanchez A, Akbari S, Etxeberria A, Arbe A, Gasser U, Moreno A J, Colmenero J, Pomposo J A. ACS Macro Lett , 2013 . 2 491 - 495 . DOI:10.1021/mz400173chttp://doi.org/10.1021/mz400173c .
Liu Y L, Pauloehrl T, Presolski S I, Albertazzi L, Palmans A R A, Meijer E W. J Am Chem Soc , 2015 . 137 13096 - 13105 . DOI:10.1021/jacs.5b08299http://doi.org/10.1021/jacs.5b08299 .
Cherian A E, Sun F C, Sheiko S S, Coates G W. J Am Chem Soc , 2007 . 129 11350 - 11351 . DOI:10.1021/ja074301lhttp://doi.org/10.1021/ja074301l .
Hansell C F, Lu A, Patterson J P, O’Reilly R K. Nanoscale , 2014 . 6 4102 - 4107 . DOI:10.1039/C3NR06706Hhttp://doi.org/10.1039/C3NR06706H .
Li W K, Thanneeru S, Kanyo I, Liu B, He J. ACS Macro Lett , 2015 . 4 736 - 740 . DOI:10.1021/acsmacrolett.5b00321http://doi.org/10.1021/acsmacrolett.5b00321 .
Wen J G, Yuan L, Yang Y F, Liu L, Zhao H Y. ACS Macro Lett , 2013 . 2 100 - 106 . DOI:10.1021/mz300636xhttp://doi.org/10.1021/mz300636x .
Li W K, Kuo C H, Kanyo I, Thanneeru S, He J. Macromolecules , 2014 . 47 5932 - 5941 . DOI:10.1021/ma501338shttp://doi.org/10.1021/ma501338s .
Wen J G, Zhang J, Zhang Y, Yang Y F, Zhao H Y. Polym Chem , 2014 . 5 4032 - 4038 . DOI:10.1039/c4py00100ahttp://doi.org/10.1039/c4py00100a .
Njikang G, Liu G J, Curda S A. Macromolecules , 2008 . 41 5697 - 5702 . DOI:10.1021/ma800642rhttp://doi.org/10.1021/ma800642r .
Cui Z G, Cao H, Ding Y, Gao P, Lu X H, Cai Y L. Polym Chem , 2017 . 8 3755 - 3763 . DOI:10.1039/C7PY00582Bhttp://doi.org/10.1039/C7PY00582B .
Roy R K, Lutz J F. J Am Chem Soc , 2014 . 136 12888 - 12891 . DOI:10.1021/ja507889xhttp://doi.org/10.1021/ja507889x .
Tang C, Zhang C L, Liu J G, Qu X Z, Li J L, Yang Z Z. Macromolecules , 2010 . 43 5114 - 5120 . DOI:10.1021/ma100437thttp://doi.org/10.1021/ma100437t .
Zhang C L, Liu B, Tang C, Liu J G, Qu X Z, Li J L, Yang Z Z. Chem Commun , 2010 . 46 4610 - 4612 . DOI:10.1039/c0cc00054jhttp://doi.org/10.1039/c0cc00054j .
Cheng L, Hou G L, Miao J J, Chen D Y, Jiang M, Zhu L. Macromolecules , 2008 . 41 8159 - 8166 . DOI:10.1021/ma800461zhttp://doi.org/10.1021/ma800461z .
Wong E H H, Qiao G G. Macromolecules , 2015 . 48 1371 - 1379 . DOI:10.1021/ma502526chttp://doi.org/10.1021/ma502526c .
Dou H J, Jiang M, Peng H S, Chen D Y, Hong Y. Angew Chem Int Ed , 2003 . 42 1516 - 1519 . DOI:10.1002/anie.200250254http://doi.org/10.1002/anie.200250254 .
Zhang Z, Zhou C M, Dong H Y, Chen D Y. Angew Chem Int Ed , 2016 . 55 6182 - 6186 . DOI:10.1002/anie.201511768http://doi.org/10.1002/anie.201511768 .
Lv L L, Zhang Z, Li H Y, Huang X Y, Chen D Y. ACS Macro Lett , 2019 . 8 1222 - 1226 . DOI:10.1021/acsmacrolett.9b00571http://doi.org/10.1021/acsmacrolett.9b00571 .
Hui T R, Chen D Y, Jiang M. Macromolecules , 2005 . 38 5834 - 5837 . DOI:10.1021/ma050435chttp://doi.org/10.1021/ma050435c .
Dzakpasu R, Axelrod D. Biophysic J , 2004 . 87 1279 - 1287 . DOI:10.1529/biophysj.103.033837http://doi.org/10.1529/biophysj.103.033837 .
0
Views
24
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution