Porous carbon materials (PCMs) have drawn wide attention in gas adsorption and energy storage due to their large specific surface areas
physical and chemical stability and structural diversity. Doping heteroatoms such as nitrogen species has been considered as a reasonable method to enhance the application performance of PCMs by improving the interactions between PCMs and adsorbates. However
heteroatom-doped PCMs prepared with traditional methods such as chemical activation have disadvantages of broad pore size distribution and difficulty in accurately locating heteroatoms on the skeleton of PCMs
thus limiting their applications in gas adsorption and energy storage. Conjugated microporous polymers (CMPs) with excellent structural controllability and permanent microporous properties are considered to be a new choice for the preparation of PCMs. In this work
two nitrogen-doped PCMs with different structural units were prepared by using CMPs as the precursors. First of all
two CMPs (TNCMP1
TNCMP2) were synthesized by Pd-catalyzed Suzuki coupling reaction. Then the CMPs were pyrolyzed at 700 °C to give two PCMs (C-TNCMP1
C-TNCMP2). The effects of carbonization and planarity adjustment on carbon dioxide (CO
2
) adsorption and supercapacitor performance of the PCMs were studied. Compared with their precursors
the obtained PCMs exhibit narrower pore size distribution and higher microporosity up to 93%. Thus
both of the PCMs show higher CO
2
adsorption ability than their precursors
among which the CO
2
adsorption capability of C-TNCMP1 is up to 3.19 mmol/g. Compared with C-TNCMP1
C-TNCMP2 with better structural planarity has larger graphite nitrogen content of 57.39 at% and higher conductivity of 3.89 × 10
−5
S/m
thus showing better supercapacitor performance. C-TNCMP2 exhibits a decent specific capacitance of 219 F/g at the current density of 0.1 A/g and a good rate capability at high current density. This work could provide a rational principle for the preparation of high performance porous carbon materials for the applications of gas adsorption and energy storage.
Lee J, Kim J, Hyeon T. Adv Mater , 2006 . 18 2073 - 2094 . DOI:10.1002/adma.200501576http://doi.org/10.1002/adma.200501576 .
Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F. Carbon , 2005 . 43 1293 - 1302 . DOI:10.1016/j.carbon.2004.12.028http://doi.org/10.1016/j.carbon.2004.12.028 .
Li M M, Xu F, Li H, Wang Y. Catal Sci Technol , 2016 . 6 3670 - 3693 . DOI:10.1039/C6CY00544Fhttp://doi.org/10.1039/C6CY00544F .
Su F B, Poh C K, Chen J S, Xu G W, Wang D, Li Q, Lin J Y, Lou X W. Energy Environ Sci , 2011 . 4 717 - 724 . DOI:10.1039/C0EE00277Ahttp://doi.org/10.1039/C0EE00277A .
Mikova N M, Chesnokov N V, Ivanov I P, Zhizhaev A M. Russ J Appl Chem , 2013 . 86 1526 - 1536 . DOI:10.1134/S1070427213100108http://doi.org/10.1134/S1070427213100108 .
Dmitruk A F, Lesishina Y O, Shendrik T G, Galushko L Y. Solid Fuel Chem , 2007 . 41 302 - 306 . DOI:10.3103/S0361521907050060http://doi.org/10.3103/S0361521907050060 .
Kuznetsov B N, Chesnokov N V, Tsyganova S I, Mikova N M, Ivanov I P, Ivanchenko N M. Solid Fuel Chem , 2016 . 50 23 - 30 . DOI:10.3103/S0361521916010067http://doi.org/10.3103/S0361521916010067 .
Xiao Z C, Kong D B, Liang J X, Wang B, Iqbal R, Yang Q H, Zhi L J. Carbon , 2017 . 116 633 - 639 . DOI:10.1016/j.carbon.2017.02.041http://doi.org/10.1016/j.carbon.2017.02.041 .
Lee J M, Briggs M E, Hasell T, Cooper A I. Adv Mater , 2016 . 28 9804 - 9810 . DOI:10.1002/adma.201603051http://doi.org/10.1002/adma.201603051 .
Zhang C, Kong R, Wang X, Xu Y F, Wang F, Ren W F, Wang Y H, Su F B, Jiang J X. Carbon , 2017 . 114 608 - 618 . DOI:10.1016/j.carbon.2016.12.064http://doi.org/10.1016/j.carbon.2016.12.064 .
Liao H P, Wang H M, Ding H M, Meng X S, Xu H, Wang B S, Ai X P, Wang C. J Mater Chem A , 2016 . 4 7416 - 7421 . DOI:10.1039/C6TA00483Khttp://doi.org/10.1039/C6TA00483K .
Liang R R, Zhao X. Org Chem Front , 2018 . 5 3341 - 3356 . DOI:10.1039/C8QO00830Bhttp://doi.org/10.1039/C8QO00830B .
Hao L, Ning J, Luo B, Wang B, Zhang Y, Tang Z, Yang J H, Thomas A, Zhi L J. J Am Chem Soc , 2015 . 137 219 - 225 . DOI:10.1021/ja508693yhttp://doi.org/10.1021/ja508693y .
Su Y Z, Liu Y X, Liu P, Wu D Q, Zhuang X D, Zhang F, Feng X L. Angew Chem , 2015 . 54 1812 - 1816 . DOI:10.1002/anie.201410154http://doi.org/10.1002/anie.201410154 .
Kou Y, Xu Y H, Guo Z Q, Jiang D L. Angew Chem Int Ed , 2011 . 50 8753 - 8757 . DOI:10.1002/anie.201103493http://doi.org/10.1002/anie.201103493 .
Xu Y H, Jin S B, Xu H, Nagai A, Jiang D L. Chem Soc Rev , 2013 . 42 8012 - 8031 . DOI:10.1039/c3cs60160ahttp://doi.org/10.1039/c3cs60160a .
Xu Y J, Wu S P, Ren S J, Ji J Y, Yue Y, Shen J J. RSC Adv , 2017 . 7 32496 - 32501 . DOI:10.1039/C7RA05551Jhttp://doi.org/10.1039/C7RA05551J .
Wang S, Liu Y C, Yu Y, Du J F, Cui Y Z, Song X W, Liang Z Q. New J Chem , 2018 . 42 9482 - 9487 . DOI:10.1039/C8NJ01306Chttp://doi.org/10.1039/C8NJ01306C .
Lee J S M, Wu T H, Alston B M, Briggs M E, Hasell T, Hu C C, Cooper A I. J Mater Chem A , 2016 . 4 7665 - 7673 . DOI:10.1039/C6TA02319Chttp://doi.org/10.1039/C6TA02319C .
Li Y Q, Ni B, Li X D, Wang X H, Zhang D F, Zhao Q F, Li J L, Lu T, Mai W J, Pan L K. Nano-Micro Lett , 2019 . 11 1 - 13 . DOI:10.1007/s40820-018-0235-zhttp://doi.org/10.1007/s40820-018-0235-z .
Wang H G, Cheng Z H, Liao Y Z, Li J H, Weber J, Thomas A, Faul C F J. Chem Mater , 2017 . 29 4885 - 4893 . DOI:10.1021/acs.chemmater.7b00857http://doi.org/10.1021/acs.chemmater.7b00857 .
Yang M, Zhou Z. Adv Sci , 2017 . 4 1600408 DOI:10.1002/advs.201600408http://doi.org/10.1002/advs.201600408 .
Meier C B, Sprick R S, Monti A, Guiglion P, Lee J S M, Zwijnenburg M A, Cooper A I. Polymer , 2017 . 126 283 - 290 . DOI:10.1016/j.polymer.2017.04.017http://doi.org/10.1016/j.polymer.2017.04.017 .
Kim J Y, Yokoyama D, Adachi C. J Phys Chem C , 2012 . 116 8699 - 8706 . DOI:10.1021/jp301650xhttp://doi.org/10.1021/jp301650x .
Shi H P, Dai J X, Shi L W, Wang M H, Fang L, Shuang S M, Dong C. Chem Comm , 2012 . 48 8586 - 8588 . DOI:10.1039/c2cc34345bhttp://doi.org/10.1039/c2cc34345b .
You B, Li N, Zhu H Y, Zhu X L, Yang J. ChemSusChem , 2013 . 6 474 - 480 . DOI:10.1002/cssc.201200709http://doi.org/10.1002/cssc.201200709 .
Jia Z Y, Zuo Z C, Yi Y P, Liu H B, Li D, Li Y J, Li Y L. Nano Energy , 2017 . 33 343 - 349 . DOI:10.1016/j.nanoen.2017.01.049http://doi.org/10.1016/j.nanoen.2017.01.049 .