浏览全部资源
扫码关注微信
1. 苏州大学材料与化学化工学部
2. 苏州工业园区生物材料表界面工程研究院
3. 江苏百赛飞生物科技有限公司
4. 苏州大学卫生与环境技术研究所 苏州 215123
Published:30 September 2020,
Published Online:24 June 2020,
Received:20 March 2020,
Revised:28 April 2020,
扫 描 看 全 文
Xiang Li, Jing-hong Wang, Zeng-chao Tang, Rui Chen, Jing-yi Fang, Dan Li, Hong Chen. Surface Modification of Polymeric Materials with Antifouling Polymer Brushes Based on a Photo-fixable Initiator. [J]. Acta Polymerica Sinica 51(11):1248-1256(2020)
Xiang Li, Jing-hong Wang, Zeng-chao Tang, Rui Chen, Jing-yi Fang, Dan Li, Hong Chen. Surface Modification of Polymeric Materials with Antifouling Polymer Brushes Based on a Photo-fixable Initiator. [J]. Acta Polymerica Sinica 51(11):1248-1256(2020) DOI: 10.11777/j.issn1000-3304.2020.20079.
表面接枝亲水性聚合物刷是实现生物医用高分子材料表面抗污改性的重要策略,而快速高效且普适性强的引发剂固定方法则是该策略一直追求的目标之一. 为此,本研究设计了一种全新的光束缚型引发剂,并利用其实现了多类型聚合物材料表面多种亲水聚合物刷的接枝. 该引发剂一端为二苯甲酮结构,通过紫外光照射可在5 min内快速固定在各类常见的医用高分子材料表面;另一侧带有双溴引发剂端基,可通过表面引发单电子转移活性自由基聚合(SI SET-LRP)实现高密度聚合物刷的接枝. 利用该方法首先在聚氯乙烯(PVC)表面制备了聚丙烯酸低聚乙二醇酯(OEGA)聚合物刷,同位素
125
I标记纤维蛋白原(Fg)的吸附结果表明改性表面具有良好的抗蛋白质吸附性能,尤其POEGA聚合时间为2 h的改性表面具有最低的Fg吸附量. 细胞黏附实验显示改性表面可以有效抑制Hela细胞和金黄色葡萄球菌的黏附. 随后验证了该方法的普适性,结果表明该方法不但适用于各类常见的医用高分子基材(聚二甲基硅氧烷(PDMS)、聚氨酯(PU)和聚对苯二甲酸乙二醇酯(PET)),还可以接枝多种亲水性聚合物(聚甲基丙烯酸-2-羟乙酯(PHEMA)、聚
N
-异丙基丙烯酰胺(PNIPAAm)、聚(甲基丙烯酸磺基甜菜碱)(PSBMA)),均可实现优异的表面抗蛋白吸附性能.
Surface grafting of hydrophilic polymer brushes is an important strategy to endow the biomedical polymer materials with anti-fouling property. Immobilization of initiator is the core procedure of this strategy
which is expected to be fast and versatile. In this study
a new UV-fixable initiator is designed
which is universal for a wide range of polymeric substrates and monomers to polymerize. The initiator contains a benzophenone structure for UV immobilization on various polymeric substrates
and two bromine initiator termini
which have the potent to graft high-density polymer brushes through the single electron transfer living radical polymerization (SET-LRP). The method was first carried out by grafting poly(oligo(ethylene glycol) methyl ether acrylate) (POEGA) brush on the poly(vinyl chloride) (PVC) surface. Fibrinogen (Fg) adsorption results showed that the modified surface has good protein-resistant properties. The POEGA brush with the polymerization time of 2 hours has the lowest amount of Fg adsorption. The results of cell adhesion experiments showed that the modified surface can effectively inhibit the adhesion of Hela cells and Staphylococcus aureus. The universality of the method was further studied on different substrates and using different hydrophilic monomers. It was showed that the UV-fixable initiator can be applied to polydimethylsiloxane (PDMS)
polyurethane (PU) and poly(ethylene terephthalate) (PET)
and is universal to other hydrophilic monomers such as 2-hydroxyethyl methacrylate (HEMA)
N
-acrylamide (NIPAAm) and sulfobetaine methacrylate (SBMA). Protein resistant property of these modified surfaces was comparable to that of the PVC-POEGA surface.
光束缚型引发剂亲水性聚合物刷抗污表面蛋白质吸附
Photo-fixable initiatorHydrophilic polymer brushAntifouling surfaceProtein adsorption
Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess D J. J Diabetes Sci Technol , 2008 . 2 ( 6 ): 1003 - 1015 . DOI:10.1177/193229680800200610http://doi.org/10.1177/193229680800200610 .
Desrousseaux C, Sautou V, Descamps S, Traoré O. J Hosp Infect , 2013 . 85 ( 2 ): 87 - 93 . DOI:10.1016/j.jhin.2013.06.015http://doi.org/10.1016/j.jhin.2013.06.015 .
McGee D C, Gould M K. New Engl J Med , 2003 . 348 ( 12 ): 1123 - 1133 . DOI:10.1056/NEJMra011883http://doi.org/10.1056/NEJMra011883 .
Zhao X, Zhang R, Liu Y, He M, Su Y, Gao C, Jiang Z. J Membr Sci , 2018 . 551 145 - 171 . DOI:10.1016/j.memsci.2018.01.039http://doi.org/10.1016/j.memsci.2018.01.039 .
Ma S, Zhang X, Yu B, Zhou F. NPG Asia Mater , 2019 . 11 ( 1 ): 1 - 39 . DOI:10.1038/s41427-018-0100-zhttp://doi.org/10.1038/s41427-018-0100-z .
Chen Q, Yu S, Zhang D, Zhang W, Zhang H, Zou J, Mao Z, Yuan Y, Gao C, Liu R. J Am Chem Soc , 2019 . 141 ( 42 ): 16772 - 16780 . DOI:10.1021/jacs.9b07105http://doi.org/10.1021/jacs.9b07105 .
Liu X, Tong W, Wu Z, Jiang W. RSC Adv , 2013 . 3 ( 14 ): 4716 - 4722 . DOI:10.1039/c3ra23069dhttp://doi.org/10.1039/c3ra23069d .
Fan X, Lin L, Dalsin J L, Messersmith P B. J Am Chem Soc , 2005 . 127 ( 45 ): 15843 - 15847 . DOI:10.1021/ja0532638http://doi.org/10.1021/ja0532638 .
Wang S, Li D, Chen H, Wu Z, Xu Y, Brash J L. J Biomater Sci Polym Ed , 2013 . 24 ( 6 ): 684 - 695 . DOI:10.1080/09205063.2012.706470http://doi.org/10.1080/09205063.2012.706470 .
Konradi R, Pidhatika B, Mühlebach A, Textor M. Langmuir , 2008 . 24 ( 3 ): 613 - 616 . DOI:10.1021/la702917zhttp://doi.org/10.1021/la702917z .
Zhang D, Chen Q, Zhang W, Liu H, Wan J, Qian Y, Li B, Tang S, Liu Y, Chen S. Angew Chem Int Ed , 2020 . 59 9586 - 9593 . DOI:org/10.1002/anie.202000416http://doi.org/org/10.1002/anie.202000416 .
He M, Gao K, Zhou L, Jiao Z, Wu M, Cao J, You X, Cai Z, Su Y, Jiang Z. Acta Biomater , 2016 . 40 142 - 152 . DOI:10.1016/j.actbio.2016.03.038http://doi.org/10.1016/j.actbio.2016.03.038 .
Zoppe J O, Ataman N C, Mocny P, Wang J, Moraes J, Klok H A. Chem Rev , 2017 . 117 ( 3 ): 1105 - 1318 . DOI:10.1021/acs.chemrev.6b00314http://doi.org/10.1021/acs.chemrev.6b00314 .
Upadhyaya L, Qian X, Wickramasinghe S R. Curr Opin Chem Eng , 2018 . 20 13 - 18 . DOI:10.1016/j.coche.2018.01.002http://doi.org/10.1016/j.coche.2018.01.002 .
Ran J, Wu L, Zhang Z, Xu T. Prog Polym Sci , 2014 . 39 ( 1 ): 124 - 144 . DOI:10.1016/j.progpolymsci.2013.09.001http://doi.org/10.1016/j.progpolymsci.2013.09.001 .
Yuan H, Qian B, Zhang W, Lan M. Appl Surface Sci , 2016 . 363 483 - 489 . DOI:10.1016/j.apsusc.2015.12.072http://doi.org/10.1016/j.apsusc.2015.12.072 .
Shen T, Liu Y, Zhu Y, Yang D Q, Sacher E. Appl Surf Sci , 2017 . 411 411 - 418 . DOI:10.1016/j.apsusc.2017.03.149http://doi.org/10.1016/j.apsusc.2017.03.149 .
Hadjesfandiari N, Weinhart M, Kizhakkedathu J N, Haag R, Brooks D E. Adv Healthc Mater , 2018 . 7 ( 5 ): 1700839 DOI:10.1002/adhm.201700839http://doi.org/10.1002/adhm.201700839 .
Liu J, Yang W, Zareie H M, Gooding J J, Davis T P. Macromolecules , 2009 . 42 ( 8 ): 2931 - 2939 . DOI:10.1021/ma802256ghttp://doi.org/10.1021/ma802256g .
Kuang J, Messersmith P B. Langmuir , 2012 . 28 ( 18 ): 7258 - 7266 . DOI:10.1021/la300738ehttp://doi.org/10.1021/la300738e .
Zobrist C, Sobocinski J, Lyskawa J, Fournier D, Miri V, Traisnel M, Jimenez M, Woisel P. Macromolecules , 2011 . 44 ( 15 ): 5883 - 5892 . DOI:10.1021/ma200853whttp://doi.org/10.1021/ma200853w .
Rånby B. Int J Adhes Adhes , 1999 . 19 ( 5 ): 337 - 343 . DOI:10.1016/S0143-7496(98)00066-9http://doi.org/10.1016/S0143-7496(98)00066-9 .
Yu L X, Hou Y, Cheng C, Schlaich C, Noeske P L M, Wei Q, Haag R. ACS Appl Mater Interfaces , 2017 . 9 ( 51 ): 44281 - 44292 . DOI:10.1021/acsami.7b13515http://doi.org/10.1021/acsami.7b13515 .
Yu Qian(于谦), Chen Hong(陈红). Acta Polymerica Sinica(高分子学报) , 2020 . 51(4) 319 − 325 DOI:10.11777/j.issn1000-3304.2020.20096http://doi.org/10.11777/j.issn1000-3304.2020.20096 .
Lu X W, Liu W, Wu Z Q, Xiong X H, Liu Q, Zhan W J, Chen H. J Mater Chem B , 2016 . 4 ( 8 ): 1458 - 1465 . DOI:10.1039/C5TB02605Ahttp://doi.org/10.1039/C5TB02605A .
Li D, Chen H, Wang S, Wu Z, Brash J L. Acta Biomater , 2011 . 7 ( 3 ): 954 - 958 . DOI:10.1016/j.actbio.2010.10.021http://doi.org/10.1016/j.actbio.2010.10.021 .
Pieters M, Wolberg A S. Res Pract Thromb Haemostasis , 2019 . 3 ( 2 ): 161 - 172 . DOI:10.1002/rth2.12191http://doi.org/10.1002/rth2.12191 .
Turan E, Caykara T. J Polym Sci, Part A: Polym Chem , 2010 . 48 ( 24 ): 5842 - 5847 . DOI:10.1002/pola.24393http://doi.org/10.1002/pola.24393 .
Vorobii M, Pop-Georgievski O, de los Santos Pereira A, Kostina N Y, Jezorek R, Sedláková Z, Percec V, Rodriguez-Emmenegger C. Polym Chem , 2016 . 7 ( 45 ): 6934 - 6945 . DOI:10.1039/C6PY01730Dhttp://doi.org/10.1039/C6PY01730D .
Yang W, Chen S, Cheng G, Vaisocherová H, Xue H, Li W, Zhang J, Jiang S. Langmuir , 2008 . 24 ( 17 ): 9211 - 9214 . DOI:10.1021/la801487fhttp://doi.org/10.1021/la801487f .
Zhao C, Li L, Wang Q, Yu Q, Zheng J. Langmuir , 2011 . 27 ( 8 ): 4906 - 4913 . DOI:10.1021/la200061hhttp://doi.org/10.1021/la200061h .
Ladd J, Zhang Z, Chen S, Hower J C, Jiang S. Biomacromolecules , 2008 . 9 ( 5 ): 1357 - 1361 . DOI:10.1021/bm701301shttp://doi.org/10.1021/bm701301s .
Zhang Y, Liu Y, Ren B, Zhang D, Xie S, Chang Y, Yang J, Wu J, Xu L, Zheng J. J Phys D Appl Phys , 2019 . 52 ( 40 ): 403001 DOI:10.1088/1361-6463/ab2cbchttp://doi.org/10.1088/1361-6463/ab2cbc .
Yang W, Zhang L, Wang S, White A D, Jiang S. Biomaterials , 2009 . 30 ( 29 ): 5617 - 5621 . DOI:10.1016/j.biomaterials.2009.06.036http://doi.org/10.1016/j.biomaterials.2009.06.036 .
0
Views
43
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution