The soft and hard acid-base theory (HSAB) is a new acid-base theory created by Sir. Pearson based on the theory of Lewis acid-base electron. It can be used to explain various chemical reactions
especially in coordination chemistry. In this study
the synthesized Cat.
1
− Cat.
6
[N
P]Ti catalysts containing ligands with electron withdrawing groups were prepared for ethylene polymerization without the addition of cocatalyst. The other optimal conditions for ethylene polymerization were determined through optimizing the polymerization behavior. Cat.
5
with ligand L5 containing tetrafluorobenzene ring showed a catalytic activity of to 2.83 × 10
5
g
P
∙(mol
M
)
−1
∙h
−1
for this polymerization. The obtained polyethylene featured high weight average molecular weight of 8.6 × 10
5
g/mol. The molecular weight distribution of polyethylene obtained by these six catalysts were in 2.2 − 2.5
and the melting point was about 135 °C The reaction mechanism of ethylene polymerization was explored by HSAB. The results showed that when the substituent on the catalyst aniline was an electron withdrawing group
both the polymerization activity and the molecular weight of the obtained polymer were higher. Density Functional Theory (DFT) results indicated that ethylene was more inclined to react with one of the M―C bonds of the catalyst. The energy barrier for the ethylene insertion reaction by Cat.
5
was the lowest
compared to other catalysts except Cat.
1
which made ethylene insertion reaction easier. These ligands containing electron withdrawing groups on aniline ring made the catalytic active species more stable. Much higher molecular weight of polyethylene was produced by utilizing these catalysts with the ligands containing electron withdrawing groups on aniline ring. These experimental results were consistent with those of HSAB and DFT.
关键词
[NP]催化剂无助催化剂乙烯聚合软硬酸碱理论密度泛函理论
Keywords
[NP]Ti catalystsWithout cocatalystEthylene polymerizationSoft and hard acid-base theoryDensity functional theory
references
Pearson R G. J Am Chem Soc , 1963 . 85 ( 22 ): 3533 - 3539 . DOI:10.1021/ja00905a001http://doi.org/10.1021/ja00905a001 .
Wang Y G, Barnes E C, Kaya S, Sharma V. J Comput Chem , 2019 . 40 2761 - 2777 . DOI:10.1002/jcc.26052http://doi.org/10.1002/jcc.26052 .
Rosenberg M G, Brinker, U H. J Org Chem , 2019 . 84, 18 11873 - 11884 . DOI:10.1021/acs.joc.9b01732http://doi.org/10.1021/acs.joc.9b01732 .
Parr R G, Pearson R G. J Am Chem Soc , 1983 . 105 ( 26 ): 7512 DOI:10.1021/ja00364a005http://doi.org/10.1021/ja00364a005 .
Delchev Y, Kuleff A, Maruani J, Mineva T, Zahariev F. Springer, 2006, 15. Dordrecht.
Johnson L K, Killian C M, Brookhart M. J Am Chem Soc , 1995 . 117 ( 23 ): 6414 - 6415 . DOI:10.1021/ja00128a054http://doi.org/10.1021/ja00128a054 .
Killian C M, Tempel D J, Johnson L K, Brookhart M. J Am Chem Soc , 1996 . 118 ( 46 ): 11664 - 11665 . DOI:10.1021/ja962516hhttp://doi.org/10.1021/ja962516h .
Mitani M, Mohri J, Yoshida Y, Fujita T. J Am Chem Soc , 2002 . 124 ( 13 ): 3327 - 33368 . DOI:10.1021/ja0117581http://doi.org/10.1021/ja0117581 .
Hu W Q, Sun X L, Wang C, Gao Y, Tang Y, Shi L P, Xia W, Sun J, Dai H L, Li X Q, Yao X L, Wang X R. Organometallics , 2004 . 23 ( 8 ): 1684 - 1688 . DOI:10.1021/om0303808http://doi.org/10.1021/om0303808 .
Cong W, Sun X L, Guo Y H, Gao Y, Liu B, Ma Z, Xia W, Shi L P, Tang Y. Rapid Commun , 2005 . 26 ( 20 ): 1609 - 1614 . DOI:10.1002/marc.200500403http://doi.org/10.1002/marc.200500403 .
Yang X H, Liu C R, Wang C, Sun X L, Guo Y H, Wang X K, Wang Z, Xie Z W, Tang Y. Angew Chem Int Ed , 2009 . 48 ( 43 ): 8099 - 8102 . DOI:10.1002/anie.200903334http://doi.org/10.1002/anie.200903334 .
Chen Z, Li J F, Tao W J, Sun X L, Yang X H, Tang Y. Macromolecules , 2013 . 46 ( 46 ): 2870 - 2875.
Yoshida Y, Matsui S, Fujita T. J Organomet Chem , 2005 . 690 ( 20 ): 4382 - 4397 . DOI:10.1016/j.jorganchem.2005.01.038http://doi.org/10.1016/j.jorganchem.2005.01.038 .
Quan H Tran, Daugulis O, Brookhart M. J Am Chem Soc , 2020 . 142 7198 - 7206 . DOI:10.1021/jacs.0c02045http://doi.org/10.1021/jacs.0c02045 .
Zhang X L, Liu Z, Yi J J, Li F J, Huang H B, Liu W, Zhen H P, Huang Q G, Gao K J, Yang W T. J Polym Sci, Part A: Polym Chem , 2012 . 50 ( 10 ): 2068 - 2074 . DOI:10.1002/pola.25981http://doi.org/10.1002/pola.25981 .
Wang J, Zhang X L, Liu Z, Zhou Y, Huang Q G, Yang W T. J Appl Polym Sci , 2015 . 132 ( 28 ): 42225 .
Wang J, Nan F, Guo J P, Wang J, Shi X H, Huang H B, Huang Q G, Yang W T. Catal Lett , 2016 . 146 609 - 619 . DOI:10.1007/s10562-015-1686-1http://doi.org/10.1007/s10562-015-1686-1 .
Wang J, He L, Nan F, Wang F, Li H M, Wang J J, Liu D, Lei M, Li L F, Huang Q G, Yang W T. J Mater Sci , 2017 . 52 5981 - 5991 . DOI:10.1007/s10853-017-0834-yhttp://doi.org/10.1007/s10853-017-0834-y .
Huang Qigu(黄启谷), Huang Haibing(黄海兵), Guo Jiangping(郭江平), Fan Meng(樊濛), Li Fengjiao(李凤娇), Cheng Lu(程璐), Liu Zhi(刘智), Liu Wei(刘伟), Yang Wantai(杨万泰). CN patent, 201310108975.1. 2013-03-31.
Wang Qiucan(王秋璨), Zhou Yang(周阳), Zhang Jiaojiao(张娇娇), Yu Hongchao(于洪超), Zhang Shaomeng(张少蒙), Fu Yao(付瑶), Shi Zihai(时子海), Li Hongming(李红明), Xia Bihua(夏碧华), Huang Qigu(黄启谷). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 2 ): 124 - 134 . DOI:10.11777/j.issn1000-3304.2018.18187http://doi.org/10.11777/j.issn1000-3304.2018.18187 .
Wang Fan(王帆), Shi Xianghui(石向辉), Nan Feng(南枫), Li Hongming(李红明), Wang Qiucan(王秋璨), Yu Hongchao(于洪超), Huang Qigu(黄启谷), Yang Wantai(杨万泰). Science China(Chemistry)(中国科学: 化学) , 2018 . 48 ( 5 ): 609 - 619 . DOI:10.1360/N032017-00199http://doi.org/10.1360/N032017-00199 .
Philip K, Stefan M. J Am Chem Soc , 2017 . 139 ( 39 ): 13786 DOI:10.1021/jacs.7b06745http://doi.org/10.1021/jacs.7b06745 .
Laura F, Thomas W, Inigo G S, Lucia C, Luigi C, Stefan M. J Am Chem Soc , 2018 . 140 ( 4 ): 1305 DOI:10.1021/jacs.7b08975http://doi.org/10.1021/jacs.7b08975 .
Synthesis of Pyrene Based α-Diimide Nickel Catalysts for Ethylene Polymerization/Copolymerization
Iron Complex Catalysts in Ethylene Reactivity: from Concept to Commercialization
Synthesis of Long-chain-branched High-density Polyethylene with Ziegler-Natta Catalyst and ω-Alkenylmethyldichlorosilane Copolymerization-Hydrolysis Chemistry
Liquid Containing Particle Polymerization: Ethylene/α-Olefin Reaction in a New Environment
Related Author
No data
Related Institution
Department of Polymer Science and Engineering, University of Science and Technology of China
Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences
Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology
Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences
CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Acadamy of Sciences