Xin-hua Wan. The Synthesis of Sequence-controlled Multiblock Copolymers by Frustrated Lewis Pair: Can the Pandora’s Box be Reopened?. [J]. Acta Polymerica Sinica 51(6):569-572(2020)
DOI:
Xin-hua Wan. The Synthesis of Sequence-controlled Multiblock Copolymers by Frustrated Lewis Pair: Can the Pandora’s Box be Reopened?. [J]. Acta Polymerica Sinica 51(6):569-572(2020) DOI: 10.11777/j.issn1000-3304.2020.20104.
The Synthesis of Sequence-controlled Multiblock Copolymers by Frustrated Lewis Pair: Can the Pandora’s Box be Reopened?
Sequence-controlled polymers have been regarded as a great challenging holy grail to be ultimately achieved in polymer science. However
its synthesis is just like a Pandora’s box that is impossible to be reopened due to the lack of efficient synthetic methodologies. More recently
Yuetao Zhang’s group at Jilin University has made a big breakthrough in the synthesis of sequence-controlled polymers by using living/controlled frustrated Lewis pair (FLP) polymerization system. FLP composed of organophosphorus superbase and organoaluminum Lewis acid can rapidly incoporate four methacrylic monomers into a tripentacontablock copolymers
which is by far the world’s highest record for block numbers (about 2.5 times of the previous record) and the degree of polymerization is 50 per block. This synthetic strategy has several remarkable features such as room-temperature synthesis and easily scale-up to high multigram experiment over 110 grams; simple procedure: no additional initiator or catalyst but only sequential addition of monomer is required for per block copolymerization. It only took 30 min to synthesize such a tripentacontablock copolymers. All these features indicated the very promising prospects of this FLP polymerization system in industry
inspiring the polymer chemists’ enthusiasm to reopen the pandora’s box.
关键词
序列可控高分子“沮丧”Lewis酸碱对活性聚合有机膦碱潘多拉魔盒
Keywords
Sequence-controlled multiblock copolymersFrustrated Lewis pairLiving polymerizationOrganophosphorus superbasePandora’ box
Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Science , 2012 . 336 ( 6080 ): 434 - 440 . DOI:10.1126/science.1215368http://doi.org/10.1126/science.1215368 .
de Neve J, Haven J J, Maes L, Junkers T. Polym Chem , 2018 . 9 ( 38 ): 4692 - 4705 . DOI:10.1039/C8PY01190Ghttp://doi.org/10.1039/C8PY01190G .
Soeriyadi A H, Boyer C, Nystrom F, Zetterlund P B, Whittaker M R. J Am Chem Soc , 2011 . 133 ( 29 ): 11128 - 11131 . DOI:10.1021/ja205080uhttp://doi.org/10.1021/ja205080u .
Zhang Q, Collins J, Anastasaki A, Wallis R, Mitchell D A, Becer C R, Haddleton D M. Angew Chem Int Ed , 2013 . 52 ( 16 ): 4435 - 4439 . DOI:10.1002/anie.201300068http://doi.org/10.1002/anie.201300068 .
Engelis N G, Anastasaki A, Nurumbetov G, Truong N P, Nikolaou V, Shegiwal A, Whittaker M R, Davis T P, Haddleton D M. Nat Chem , 2017 . 9 ( 2 ): 171 - 178 . DOI:10.1038/nchem.2634http://doi.org/10.1038/nchem.2634 .
Zhao W C, He J H, Zhang Y T. Sci Bull , 2019 . 64 ( 24 ): 1830 - 1840 . DOI:10.1016/j.scib.2019.08.025http://doi.org/10.1016/j.scib.2019.08.025 .
Wang Q Y, Zhao W C, He J H, Zhang Y T, Chen E Y X. Macromolecules , 2017 . 50 ( 1 ): 123 - 136 . DOI:10.1021/acs.macromol.6b02398http://doi.org/10.1021/acs.macromol.6b02398 .
Wang Q Y, Zhao W C, Zhang S T, He J H, Zhang Y T, Chen E Y X. ACS Catal , 2018 . 8 ( 4 ): 3571 - 3578 . DOI:10.1021/acscatal.8b00333http://doi.org/10.1021/acscatal.8b00333 .
Wang H Y, Wang Q Y, He J H, Zhang Y T. Polym Chem , 2019 . 10 ( 26 ): 3597 - 3603 . DOI:10.1039/C9PY00427Khttp://doi.org/10.1039/C9PY00427K .
Zhao W C, Wang Q Y, He J H, Zhang Y T. Polym Chem , 2019 . 10 ( 31 ): 4328 - 4335 . DOI:10.1039/C9PY00626Ehttp://doi.org/10.1039/C9PY00626E .
Bai Y, He J H, Zhang Y T. Angew Chem Int Ed , 2018 . 57 ( 52 ): 17230 - 17234 . DOI:10.1002/anie.201811946http://doi.org/10.1002/anie.201811946 .
Bai Y, Wang H Y, He J H, Zhang Y T. Angew Chem Int Ed, 2020, DOI: 10.1002/anie.20200401310.1002/anie.202004013