Bacterial cellulose (BC) is a nano-size cellulose synthesized by
Gluconacetobacter xylinus
during its growth and movement. Due to its good biocompatibility and good mechanical property
BC has been widely studied and applied in biomedicine and tissue engineering.
Gluconacetobacter xylinus
is a kind of aerobic bacteria
which preferentially synthesizes a BC film at the gas-liquid interface. Aiming at the sensitive characteristics of oxygen demand of
Gluconacetobacter xylinus
we referred the method of “solid-gas-liquid” three-phase interface formed on the interface of superhydrophobic nanomaterials in aqueous solution. Photolithographic silicon substrate with different micropillar structure on the surface were manufactured
and further evaporated a layer of heptadecafluorodecyltrimethoxysilane on the surface of silicon substrate
which made the silicon substrate superhydrophobic. Different sizes of medium with bacterial droplet sprayed on the silicon substrate through a sprinkling can
which made medium droplets were limited contact with the top of micropillar on the photolithographic silicon substrate to form a "solid-gas-liquid" interface
to solve the oxygen demand problem between ordered microstructure template and bacterial culture medium. Therefore
many micro-size fibers obtained due to the different sizes of droplet
including BC nanowire
BC wall
BC ball and BC network. When bacterial medium droplet rolling on pillar-structured photolithographic (~ 5 μL) formed BC nanowire between tips of two micropillar
large droplet (10 – 20 μL) formed BC wall between two micropillars
over 30 μL droplet formed BC network on micropillars. Furthermore
large droplet (10 – 20 μL) formed BC balls instead of BC network on large space (20 μm) vertical pillar-structured photolithographic silicon substrates
micro droplet (~ 1 μL) formed single BC ball on small space (5 μm) vertical pillar-structured photolithographic silicon substrates. In addition
HaCAT cells could culture on the BC network that means BC network synthesize in this way could capture adherent cells. Finally
challenges and opportunities of this BC synthesis method and its BC products toward future applications were discussed.
Shi Z, Zhang Y, Phillips G O, Yang G. Food Hydrocoll , 2014 . 35 ( 1 ): 539 - 545 . DOI:10.1016/j.foodhyd.2013.07.012http://doi.org/10.1016/j.foodhyd.2013.07.012 .
Fu L, Zhang Y, Li C, Wu Z, Zhuo Q, Huang X, Qiu G, Zhou P, Yang G. J Mater Chem , 2012 . 22 ( 24 ): 12349 - 12357 . DOI:10.1039/c2jm00134ahttp://doi.org/10.1039/c2jm00134a .
Li Y, Jiang K, Feng J, Liu J, Huang R, Chen Z, Yang J, Dai Z, Chen Y, Wang N, Zhang W, Zheng W, Yang G, Jiang X. Adv Healthc Mater , 2017 . 6 ( 11 ): 1601343 DOI:10.1002/adhm.201601343http://doi.org/10.1002/adhm.201601343 .
Huang L, Chen X, Nguyen T X, Tang H, Zhang L, Yang G. J Mater Chem B , 2013 . 1 ( 23 ): 2976 - 2984 . DOI:10.1039/c3tb20149jhttp://doi.org/10.1039/c3tb20149j .
Wu L, Zhou H, Sun H J, Zhao Y, Yang X, Cheng S Z, Yang G. Biomacromolecules , 2013 . 14 ( 4 ): 1078 - 1084 . DOI:10.1021/bm3019664http://doi.org/10.1021/bm3019664 .
Yang J, Wang L, Zhang W, Sun Z, Li Y, Yang M, Zeng D, Peng B, Zheng W, Jiang X, Yang G. Small , 2018 . 14 ( 7 ): 1702582 DOI:10.1002/smll.201702582http://doi.org/10.1002/smll.201702582 .
Geisel N, Clasohm J, Shi X, Lamboni L, Yang J, Mattern K, Yang G, Schäfer K H, Saumer M. Small , 2016 . 12 ( 39 ): 5407 - 5413 . DOI:10.1002/smll.201601679http://doi.org/10.1002/smll.201601679 .
Jiang Lei(江雷), Feng Lin(冯琳). Bioinspired Intelligent Nanostructured Interfacial Materials(仿生智能纳米界面材料). Beijing(北京): Chemical Industry Press(化学工业出版社), 2007
Lei Y, Sun R, Zhang X, Feng X, Jiang L. Adv Mater , 2016 . 28 ( 7 ): 1477 - 1481 . DOI:10.1002/adma.201503520http://doi.org/10.1002/adma.201503520 .
Wu Y, Liu K, Su B, Jiang L. Adv Mater , 2014 . 26 ( 7 ): 1124 - 1128 . DOI:10.1002/adma.201304062http://doi.org/10.1002/adma.201304062 .
Su B, Wang S, Ma J, Song Y, Jiang L. Adv Funct Mater , 2011 . 21 ( 17 ): 3297 - 3307 . DOI:10.1002/adfm.201100603http://doi.org/10.1002/adfm.201100603 .
Su B, Wang S, Ma J, Wu Y, Chen X, Song Y, Jiang L. Adv Mater , 2012 . 24 ( 4 ): 559 - 564 . DOI:10.1002/adma.201104019http://doi.org/10.1002/adma.201104019 .
Mun R P, Byars J A, Boger D V. J Non-Newton Fluid Mech , 1998 . 74 ( 1 ): 285 - 297 . DOI:10.1016/S0377-0257(97)00074-8http://doi.org/10.1016/S0377-0257(97)00074-8 .
Christanti Y, Walker L M. J Non-Newton Fluid Mech , 2001 . 100 ( 1 ): 9 - 26 . DOI:10.1016/S0377-0257(01)00135-5http://doi.org/10.1016/S0377-0257(01)00135-5 .
Cooper-White J J, Fagan J E, Tirtaatmadja V, Lester D R, Boger D V. J Non-Newton Fluid , 2002 . 106 ( 1 ): 29 - 59 . DOI:10.1016/S0377-0257(02)00084-8http://doi.org/10.1016/S0377-0257(02)00084-8 .