Light can induce reversible solid-to-liquid transitions of some azobenzene-containing polymers (azopolymers). These kinds of azopolymers have photoswitchable glass transition temperature (
T
g
).
Trans
and
cis
isomers usually have different
T
g
. The
T
g
values of
trans
azopolymers are above room temperature
which are solids. On the contrary
cis
azopolymers are liquid with
T
g
values below room temperature.
Trans
-to-
cis
isomerization occurs by UV irradiation. Visible light or heat can induce
cis
-to-
trans
isomerization. The performance did not change after dozens of reversible cycles. Compared with heat-induced solid-to-liquid transition
photoinduced reversible solid-to-liquid transitions have higher spatiotemporal resolution. The mechanism of solid-to-liquid transition was discussed in this article. Side-chain azopolymers are most studied up to now. The results show that the length of spacer and alkyl tail of an azopolymer is the key factor of whether it shows photoinduced solid-to-liquid transition. Different structures of main chain azopolymers also affect photo isomerization
which could be efficiently constructed by reversible addition-fragmentation chain transfer polymerization (RAFT)
atom transfer radical polymerization (ATRP) and ring opening metathesis polymerization (ROMP). Azopolymers are widely used in self-healing materials
adhesives
photo-actuators
micro-actuators
transfer printing
nanoimprint
lithography
etc
. In this feature article
recent progress of azopolymers in photoinduced reversible solid-to-liquid transitions is reviewed
their potential applications are demonstrated
and the remaining challenges in this field are discussed.
Hartley G S. Nature , 1937 . 140 ( 3537 ): 281 - 281.
Hartley G S. J Chem Soc (Resumed) , 1938 . ( 0 ): 633 - 642.
Xu W C, Sun S D, Wu S. Angew Chem Int Ed , 2019 . 58 ( 29 ): 9712 - 9740 . DOI:10.1002/anie.201814441http://doi.org/10.1002/anie.201814441 .
Akiyama H, Yoshida M. Adv Mater , 2012 . 24 ( 17 ): 2353 - 2356 . DOI:10.1002/adma.201104880http://doi.org/10.1002/adma.201104880 .
Akiyama H, Kanazawa S, Okuyama Y, Yoshida M, Kihara H, Nagai H, Norikane Y, Azummi R. ACS Appl Mater Interfaces , 2014 . 6 ( 10 ): 7933 - 7941 . DOI:10.1021/am501227yhttp://doi.org/10.1021/am501227y .
Hu J, Li X, Ni Y, Ma S D, Yu H F. J Mater Chem C , 2018 . 6 ( 40 ): 10815 - 10821 . DOI:10.1039/C8TC03693Dhttp://doi.org/10.1039/C8TC03693D .
Uchida E, Sakaki K, Nakamura Y, Azumi R, Hirai Y, Akiyama H, Yoshida M, Norikane Y. Chem Eur J , 2013 . 19 ( 51 ): 17391 - 17397 . DOI:10.1002/chem.201302674http://doi.org/10.1002/chem.201302674 .
Zhou H W, Xue C G, Weis P, Suzuki Y, Huang S L, Koynov K, Auernhammer G K, Berger R, Butt H J, Wu S. Nat Chem , 2017 . 9 ( 2 ): 145 - 151 . DOI:10.1038/nchem.2625http://doi.org/10.1038/nchem.2625 .
Pipertzis A, Hess A, Weis P, Papamokos G, Koynov K, Wu S, Floudas G. ACS Macro Lett , 2018 . 7 ( 1 ): 11 - 15 . DOI:10.1021/acsmacrolett.7b00800http://doi.org/10.1021/acsmacrolett.7b00800 .
Weis P, Hess A, Kircher G, Huang S, Auernhammer G K, Koynov K, Butt H J, Wu S. Chem Eur J , 2019 . 25 ( 46 ): 10946 - 10953 . DOI:10.1002/chem.201902273http://doi.org/10.1002/chem.201902273 .
Akiyama H, Fukata T, Yamashita A, Yoshida M, Kihara H. J Adhe , 2016 . 93 ( 10 ): 823 - 830.
Ito S, Yamashita A, Akiyama H, Kihara H, Yoshida M. Macromolecules , 2018 . 51 ( 9 ): 3243 - 3253 . DOI:10.1021/acs.macromol.8b00156http://doi.org/10.1021/acs.macromol.8b00156 .
Ito S, Akiyama H, Sekizawa R, Mori M, Yoshida M, Kihara H. ACS Appl Mater Interfaces , 2018 . 10 ( 38 ): 32649 - 32658 . DOI:10.1021/acsami.8b09319http://doi.org/10.1021/acsami.8b09319 .
Liu Y L, Chuo T W. Polym Chem-UK , 2013 . 4 ( 7 ): 2194 - 2205 . DOI:10.1039/c2py20957hhttp://doi.org/10.1039/c2py20957h .
Yoshie N, Saito S, Oya N. Polymer , 2011 . 52 ( 26 ): 6074 - 6079 . DOI:10.1016/j.polymer.2011.11.007http://doi.org/10.1016/j.polymer.2011.11.007 .
Liu H, Xu B, Yang X, Li Z, Mo Z, Yao Y, Lin S. Compos Commun , 2020 . 19 233 - 238 . DOI:10.1016/j.coco.2020.03.014http://doi.org/10.1016/j.coco.2020.03.014 .
Zhou Y, Chen M S, Ban Q F, Zhang Z L, Shuang S M, Koynov K, Butt H J, Kong J, Wu S. ACS Macro Lett , 2019 . 8 ( 8 ): 968 - 972 . DOI:10.1021/acsmacrolett.9b00459http://doi.org/10.1021/acsmacrolett.9b00459 .
Chen M S, Yao B J, Kappl M, Liu S Y, Yuan J Y, Berger R, Zhang F A, Butt H-J, Liu Y L, Wu S. Adv Funct Mater , 2019 . 30 ( 4 ): 1906752 .
Lv J A, Liu Y, Wei J, Chen E, Qin L, Yu Y L. Nature , 2016 . 537 ( 7619 ): 179 - 184 . DOI:10.1038/nature19344http://doi.org/10.1038/nature19344 .
Xu B, Zhu C, Qin L, Wei J, Yu Y L. Small , 2019 . 15 ( 24 ): 1901847 DOI:10.1002/smll.201901847http://doi.org/10.1002/smll.201901847 .
Yang B, Cai F, Huang S, Yu H F. Angew Chem Int Ed , 2020 . 59 ( 10 ): 4035 - 4042 . DOI:10.1002/anie.201914201http://doi.org/10.1002/anie.201914201 .
Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R, Braun P V, Cahill D G. Proc Natl Acad Sci USA , 2019 . 116 ( 13 ): 5973 - 5978 . DOI:10.1073/pnas.1817082116http://doi.org/10.1073/pnas.1817082116 .
Weis P, Wang D, Wu S. Macromolecules , 2016 . 49 ( 17 ): 6368 - 6373 . DOI:10.1021/acs.macromol.6b01367http://doi.org/10.1021/acs.macromol.6b01367 .