with double charged imidazole rings was successfully synthesized and mixed with a monocationic ionic liquids (MIL) [C
8
(MIM)][TFSI]
. Compared with MIL
the double imidazolium rings on the DIL cation greatly limits the vibration ability of the alkyl chain
which shows a much higher wavenumber in infrared spectrum. The DIL/MIL mixtures show Arrhenius fluid behaviour
and their viscosities follow the logarithmic mixing rule. With the increase of DIL content in the ILs mixtures
the viscosity and flow activation energy gradually increase
which is closely related to the molecular size and intermolecular interaction of DIL. Then
the effect of mixed ILs on the entanglement and relaxation of poly(methyl methacrylate) (PMMA) was extensively investigated by rheological tests. The master curves obtained by time-temperature superposition principle show that DIL could significantly change the relaxation behaviour and entanglement state of PMMA chains in mixed ILs. With increasing DIL content in the mixed ILs
both the terminal relaxation
τ
1
and entanglement relaxation
τ
e
of PMMA chains were retarded
and the entanglement network of the PMMA/ILs becomes more compact
showing higher plateau modulus and greater viscosity. More interaction sites could be formed between PMMA chains and DIL molecules due to its unique double imidazolium rings structure
which results in more cohesive entanglements among PMMA chains and thus restrict their relaxation. Moreover
there is a mathematical relationship between the rheological parameters (such as
τ
1
and
τ
e
) of PMMA/ILs and the viscosity of ILs mixtures
so the rheological behaviour of the system could be approximately predicted. On the other hand
thermal stability
glass transition and ion conductivity of PMMA/ILs were also discussed. The thermal decomposition temperature and glass transition temperature of PMMA/ILs increased with the DIL content
Lee H N, Newell N, Bai Z, Lodge T P. Macromolecules , 2012 . 45 3627 - 3633 . DOI:10.1021/ma300335phttp://doi.org/10.1021/ma300335p .
He Y Y, Li Z B, Simone P, Lodge T P. J Am Chem Soc , 2006 . 128 2745 - 2750 . DOI:10.1021/ja058091thttp://doi.org/10.1021/ja058091t .
Xiao Z L, Larson R G, Chen Y L, Zhou C T, Niu Y H, Li G X. Soft Matter , 2016 . 12 7613 - 7625 . DOI:10.1039/C6SM01220Ehttp://doi.org/10.1039/C6SM01220E .
Li W, Wu P Y. Soft Matter , 2013 . 9 11585 - 11597 . DOI:10.1039/c3sm51920ahttp://doi.org/10.1039/c3sm51920a .
Ramenskaya L M, Grishina E P. J Mol Liq , 2016 . 218 133 - 137 . DOI:10.1016/j.molliq.2016.02.037http://doi.org/10.1016/j.molliq.2016.02.037 .
Anderson J L, Ding R, Ellern A, Armstrong D W. J Am Chem Soc , 2005 . 127 593 - 604 . DOI:10.1021/ja046521uhttp://doi.org/10.1021/ja046521u .
Patil R A, Talebi M, Xu C, Bhawal S S, Armstrong D W. Chem Mater , 2016 . 28 4315 - 4323 . DOI:10.1021/acs.chemmater.6b01247http://doi.org/10.1021/acs.chemmater.6b01247 .
Sahu P K, Ghosh A, Sarkar M. J Phys Chem B , 2015 . 119 14221 - 14235 . DOI:10.1021/acs.jpcb.5b07357http://doi.org/10.1021/acs.jpcb.5b07357 .
Du L, Geng C, Zhang D, Lan Z, Liu C. J Phys Chem B , 2016 . 120 6721 - 6729 . DOI:10.1021/acs.jpcb.6b04218http://doi.org/10.1021/acs.jpcb.6b04218 .
Ishida T, Shirota H. J Phys Chem B , 2013 . 117 1136 - 1150.
Wang Yifu(王一夫), Wan Heting(万贺廷), Wang Dan(王丹), Wang Jilin(王吉林), Wang Lulu(王璐璐),Feng Ruijiang(封瑞江). Acta Polymerica Sinica(高分子学报) , 2018 . (4) 541 - 552 . DOI:10.11777/j.issn1000-3304.2017.17150http://doi.org/10.11777/j.issn1000-3304.2017.17150 .
Hooshyari K, Javanbakht M, Adibi M. Electrochim Acta , 2016 . 205 142 - 152 . DOI:10.1016/j.electacta.2016.04.115http://doi.org/10.1016/j.electacta.2016.04.115 .
Malham I B, Turmine M. J Chem Thermodyn , 2008 . 40 718 - 723 . DOI:10.1016/j.jct.2007.10.002http://doi.org/10.1016/j.jct.2007.10.002 .
Shirota H, Mandai T, Fukazawa H, Kato T. J Chem Eng Data , 2011 . 56 2453 - 2459 . DOI:10.1021/je2000183http://doi.org/10.1021/je2000183 .
Grunberg L, Nissan A H. Nature , 1949 . 164 799 - 800.
Tsierkezos, Nikos G, Molinou I E. J Chem Eng Data , 1998 . 43 989 - 993 . DOI:10.1021/je9800914http://doi.org/10.1021/je9800914 .
Altin E, Gradl J, Peukert W. Chem Eng Technol , 2006 . 29 1347 - 1354 . DOI:10.1002/ceat.200600135http://doi.org/10.1002/ceat.200600135 .
Okoturo O O, VanderNoot T J. J Electroanal Chem , 2004 . 568 167 - 181 . DOI:10.1016/j.jelechem.2003.12.050http://doi.org/10.1016/j.jelechem.2003.12.050 .
Qian R Y. Macromol Symp , 1977 . 124 ( 1 ): 15 - 26.
Ferry J D. Viscoelastic Properties of Polymers. New York: John Wiley & Sons, 1980. 81 − 82.
Vega J F, Rastogi S, Peters G W M, Meijer H E H. J Rheol , 2004 . 48 663 - 678 . DOI:10.1122/1.1718367http://doi.org/10.1122/1.1718367 .
Lv Y, Wu J, Zhang J, Niu Y, Liu C Y, He J, Zhang J. Polymer , 2012 . 53 2524 - 2531 . DOI:10.1016/j.polymer.2012.03.037http://doi.org/10.1016/j.polymer.2012.03.037 .
Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski J L. Polym Degrad Stabil , 2003 . 79 271 - 281 . DOI:10.1016/S0141-3910(02)00291-4http://doi.org/10.1016/S0141-3910(02)00291-4 .
Cylindrical Side-chain Polymers: Structure, Viscoelasticity and Functional Applications
Progress in the Viscoelasticity Study of Giant Molecules
Synthesis of HBPE-b-PMMA Block Copolymer and Its Application in Preparing Graphene Solution by Noncovalent Exfoliation of Graphite in Toluene
PREPARATION AND RELAXATION BEHAVIOR OF LAYERED DOUBLE HYDROXIDE MODIFIED PU/PMMA NANOCOMPOSITES
Related Author
No data
Related Institution
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering, Peking University
Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemcial Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University
College of materials science and engineering, Zhejiang University of Technology
Department of Polymer Science and Engineering, Zhejiang University