Semi-aromatic polyamides (SaPAs) and their derivatives combining each advantage of aromatic and aliphatic polyamides receive ever-increasing interest in both academic and industrial fields. However
severe challenges
such as processibility and flammability of SaPAs still remain which limit their versatile applications. In order to endow satistied processibility of SaPAs either in melt or in solution
tremendous efforts have been explored to weaken the interchain cohesive energy by chemical modification of the SaPAs’ backbones or side groups. Unfortunately
their flame retardancy got even worse. In this work
a novel series of SaPAs containing flexible siloxane spacers and rigid fluorenyl pendent
termed P-FPH
100−
x
Si
x
were designed and synthesized through the aromatic nucleophilic substitution (S
N
Ar) polycondensation. The effects of both the fluorenyl pendent and siloxane spacers on the comprehensive properties of the semi-aromatic polyamides were comprehensively investigated. On the one hand
the presence of the rigid fluorenyl pendent endowed the resulting P-FPH
100−
x
Si
x
with enhanced thermal stability and mechanical properties
compared with the commercially available HTN. On the other hand
with increasing content of the siloxane spacers
their tensile strength and impact strength gradually decreased. Most importantly
by introducing the silaxane spacers
P-FPH
100−
x
Si
x
displayed intrinsic flame retardancy and anti-dripping performance despite the absence of conventional P-/N-containing flame retardants. When the content of the siloxane spacers was 10 mol%
the P-FPH
80
Si
20
did not only achieve the V-0 rating in UL-94 burning test with limiting oxygen index (LOI) as high as 33.5%
but also maintain 80.0 MPa of tensile strength and 4.8 kJ/m
2
of the notched Izod impact strength. Taking the aforementioned advantages
this kind of novel SaPAs hold potential in a wide range of applications.
Lin Xuebao(林学葆), Du Shuanglan(杜双兰), Tan Yi(谭翼), Chen Li(陈力), Wang Yuzhong(王玉忠). Acta Polymerica Sinica(高分子学报) , 2016 . ( 11 ): 1522 - 1528 . DOI:10.11777/j.issn1000-3304.2016.16191http://doi.org/10.11777/j.issn1000-3304.2016.16191 .
Uchida K, Kikuchi H C K C, Kashimura T C K C, Yamashita T C K C, Yamasaki H C K C. European patent, C08G, 1860134. 2015-05-27
Uchida K, Kikuchi H, Kashimura T, Yamashita T, Yamasaki H. US patent, 20090098325 A1.2009-04-16
Lin X B, Chen L, Long J W, Du S L, Wang Y Z. Chem Eng J , 2018 . 334 1046 - 1054 . DOI:10.1016/j.cej.2017.10.101http://doi.org/10.1016/j.cej.2017.10.101 .
Zhao B, Chen L, Long J W, Chen H B, Wang Y Z. Ind Eng Chem Res , 2013 . 52 ( 8 ): 2875 - 2886 . DOI:10.1021/ie303446shttp://doi.org/10.1021/ie303446s .
Braun U, Schartel B, Fichera M A, Jäger C. Polym Degrad Stab , 2007 . 92 ( 8 ): 1528 - 1545 . DOI:10.1016/j.polymdegradstab.2007.05.007http://doi.org/10.1016/j.polymdegradstab.2007.05.007 .
Lin G P, Chen L, Wang X L, Jian R K, Zhao B, Wang Y Z. Ind Eng Chem Res , 2013 . 52 ( 44 ): 15613 - 15620 . DOI:10.1021/ie402396xhttp://doi.org/10.1021/ie402396x .
Lin X B, Du S L, Long J W, Chen L, Wang Y Z. ACS Appl Mater Interfaces , 2016 . 8 ( 1 ): 881 - 890 . DOI:10.1021/acsami.5b10287http://doi.org/10.1021/acsami.5b10287 .
Chen Lin(陈琳), Wu Jianing(吴嘉宁), Ni Yanpeng(倪延朋), Fu Teng(付腾), Wu Zhizheng(吴志正), Wang Xiuli(汪秀丽), Wang Yuzhong(王玉忠). Acta Polymerica Sinica(高分子学报) , 2017 . ( 7 ): 1207 - 1214 . DOI:10.11777/j.issn1000-3304.2017.17079http://doi.org/10.11777/j.issn1000-3304.2017.17079 .
Wang Yuzhong(王玉忠). Flame-retardation Design of PET Fibers(聚酯纤维阻燃化设计). Chengdu(成都): Sichuan Science & Technology Press(四川科学技术出版社), 1994. 10 – 18
Zhang Y, Chen L, Zhao J J, Chen H B, He M X, Ni Y P, Zhai J Q, Wang X L, Wang Y Z. Polym Chem , 2014 . 5 ( 6 ): 1982 - 1991 . DOI:10.1039/C3PY01030Ahttp://doi.org/10.1039/C3PY01030A .
Fan S, Peng B, Yuan R, Wu D, Wang X, Yu J, Li F. Compos Part B-Eng , 2020 . 183 107684 .
Ge H, Wang W, Pan Y, Yu X, Hu W, Hu Y. RSC Adv , 2016 . 6 ( 85 ): 81802 - 81808 . DOI:10.1039/C6RA17108Ghttp://doi.org/10.1039/C6RA17108G .
Long J W, Chen L, Liu B W, Shi X H, Lin X B, Li Y M, Wang Y Z. Macromolecules , 2020 . 53 ( 9 ): 3504 - 3513 . DOI:10.1021/acs.macromol.0c00578http://doi.org/10.1021/acs.macromol.0c00578 .
Glassy Hydrogels: From New State to High Performances of Gel Materials
Hydrogen-bonded Supramolecular Polymeric Materials: From Structure and Performance to Functionality and Application
Mechanical Properties and Mullins Effect of Ethylene Propylene Diene Monomer Vulcanizes Reinforced with Silica Powders with Different Micropore Structures
Strong and Tough Chitosan Aerogels via Hofmeister Effect
Progress on Intrinsically Flame-retardant Bio-based Epoxy Thermosets
Related Author
No data
Related Institution
College of Materials Science and Engineering, Qingdao University
Department of Polymer Science and Engineering, Zhejiang University
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University
Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
Zheda Institute of Advanced Materials and Chemical Engineering