浏览全部资源
扫码关注微信
厦门大学化学化工学院化学系 固体表面物理化学国家重点实验室 厦门 361005
Published:15 August 2020,
Published Online:21 July 2020,
Received:19 May 2020,
Revised:5 June 2020,
扫 描 看 全 文
Ru-yue Lan, Lin Zhu, Xiao-fei Wang, Wei-tai Wu. Synthesis and Glucose-responsiveness of Synthetic-Lectin-contained Microgels. [J]. Acta Polymerica Sinica 51(9):961-968(2020)
Ru-yue Lan, Lin Zhu, Xiao-fei Wang, Wei-tai Wu. Synthesis and Glucose-responsiveness of Synthetic-Lectin-contained Microgels. [J]. Acta Polymerica Sinica 51(9):961-968(2020) DOI: 10.11777/j.issn1000-3304.2020.20128.
葡萄糖响应高分子微凝胶有望用于设计构建可持续检测葡萄糖并输出反馈的系统,但如何实现高选择性识别水环境中葡萄糖是较大挑战. 本工作优化了仿凝集素(s-Lectin)的合成路线,通过迈克尔加成、酰胺缩合等,4步合成出s-Lectin,进而将其包裹于聚异丙基丙烯酰胺(pNIPAM)交联网络中,制备得到新型的葡萄糖响应微凝胶. 随着葡萄糖浓度在0 ~ 30 mmoL范围内逐渐增大,浊度法研究表明该仿凝集素微凝胶水溶液消光度呈现持续降低的趋势,而动态光散射法测试结果显示仿凝集素微凝胶粒径变大,即微凝胶发生了溶胀. 进一步采用动态光散射法研究对葡萄糖、果糖、甘露糖、半乳糖等的识别选择性,结果表明仿凝集素微凝胶仅在水溶液中加入葡萄糖时发生溶胀,而在加入果糖、甘露糖、半乳糖等时则几乎没有发生粒径变化,展示出可高选择性识别水环境中葡萄糖的特性,有望用于血糖检测.
Glucose-responsive polymer microgels have been used for fabricating smart-feedback systems that can continuously detect glucose. However
how to identify glucose in water with high selectivity remains a challenge. In this work
we optimized the synthetic route of synthetic-Lectin (s-Lectin). The dendritic macrocycle molecule (s-Lectin) was synthesized
via
four steps
including Michael addition and amide condensation
and then was embedded into the chemically crosslined poly(
N
-isopropylacrylamide) networks to prepare a new class of glucose-responsive polymer microgels. With an increase in glucose concentration over a clinically relevant range of 0 − 30 mmol/L
turbidity studies show that the extinction of the microgel dispersion decreases
and the dynamic light scattering tests reveal that the diameter of the microgels become larger
indicating the swelling of the microgels. The microgels can keep nearly unchanged in the size upon adding other monosaccharides (with fructose
galactose
and mannose as models)
indicating a high selectivity of the microgels to bind glucose
making them potential use for blood glucose detection (with pig blood serum as a model).
仿凝集素高分子微凝胶葡萄糖响应血糖检测
Synthetic-LectinPolymer microgelsGlucose-responsiveBlood glucose detection
Döring A, Birnbaum W, Kuckling D. Chem Soc Rev , 2013 . 42 7391 - 7420 . DOI:10.1039/c3cs60031ahttp://doi.org/10.1039/c3cs60031a .
Guan Y, Zhang Y J. Chem Soc Rev , 2013 . 42 8106 - 8121 . DOI:10.1039/c3cs60152hhttp://doi.org/10.1039/c3cs60152h .
Liu Gan(刘赣), Yang Hao(杨浩), Ma Rujiang(马如江), Shi Linqi(史林启). Acta Polymerica Sinica(高分子学报) , 2014 . ( 9 ): 1161 - 1173 . DOI:10.11777/j.issn1000-3304.2014.14079http://doi.org/10.11777/j.issn1000-3304.2014.14079 .
Yang Ting(杨挺), Du Fusheng(杜福胜), Li Zichen(李子臣). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 5 ): 516 - 526 . DOI:10.11777/j.issn1000-3304.2019.19017http://doi.org/10.11777/j.issn1000-3304.2019.19017 .
Wang Q X, Fu M, Guan Y, James T D, Zhang Y. J. Sci China Chem , 2020 . 63 377 - 385 . DOI:10.1007/s11426-019-9680-6http://doi.org/10.1007/s11426-019-9680-6 .
Durner J. Angew Chem Int Ed , 2010 . 49 1026 - 1051 . DOI:10.1002/anie.200903363http://doi.org/10.1002/anie.200903363 .
Zhang Y J, Guan Y, Zhou S Q. Biomacromolecules , 2006 . 7 3196 - 3201 . DOI:10.1021/bm060557shttp://doi.org/10.1021/bm060557s .
Xing Shuying(邢淑莹), Guan Ying(关英), Zhang Yongjun(张拥军). Acta Polymerica Sinica(高分子学报) , 2011 . ( 6 ): 567 - 571 . DOI:10.3724/SP.J.1105.2011.11055http://doi.org/10.3724/SP.J.1105.2011.11055 .
Wu Q, Wang L, Yu H J, Wang J J, Chen Z F. Chem Rev , 2011 . 111 7855 - 7875 . DOI:10.1021/cr200027jhttp://doi.org/10.1021/cr200027j .
Wu Y H, Hu H M, Hu J M, Liu S Y. Macromol Rapid Commun , 2012 . 33 1852 - 1860 . DOI:10.1002/marc.201200411http://doi.org/10.1002/marc.201200411 .
Wu W T, Zhou S Q. Macromol Biosci , 2013 . 13 1464 - 1477 . DOI:10.1002/mabi.201300120http://doi.org/10.1002/mabi.201300120 .
Ye T, Yan S T, Hu Y M, Ding L, Wu W T. Polym Chem , 2014 . 5 ( 1 ): 186 - 194 . DOI:10.1039/C3PY00778Bhttp://doi.org/10.1039/C3PY00778B .
Wu Q S, Du X, Chang A P, Jiang X M, Yan X Y, Cao X Y, Farooqi Z H, Wu W T. Polym Chem , 2016 . 7 6500 - 6512 . DOI:10.1039/C6PY01521Bhttp://doi.org/10.1039/C6PY01521B .
Davis A P, Wareham R S. Angew Chem Int Ed , 1999 . 38 ( 20 ): 2978 - 2996 . DOI:10.1002/(SICI)1521-3773(19991018)38:20<2978::AID-ANIE2978>3.0.CO;2-Phttp://doi.org/10.1002/(SICI)1521-3773(19991018)38:20<2978::AID-ANIE2978>3.0.CO;2-P .
Lee H, Hong Y J, Baik S, Hyeon T, Kim D H. Adv Healthc Mater , 2018 . 7 1701150 DOI:10.1002/adhm.201701150http://doi.org/10.1002/adhm.201701150 .
Davis A P, Wareham R S. Angew Chem Int Ed , 1998 . 37 2270 - 2273 . DOI:10.1002/(SICI)1521-3773(19980904)37:16<2270::AID-ANIE2270>3.0.CO;2-6http://doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2270::AID-ANIE2270>3.0.CO;2-6 .
Mazik M, Cavga H. J Org Chem , 2006 . 71 ( 8 ): 2957 - 2963 . DOI:10.1021/jo052479phttp://doi.org/10.1021/jo052479p .
Kubik S. Angew Chem Int Ed , 2009 . 48 ( 10 ): 1722 - 1725 . DOI:10.1002/anie.200805497http://doi.org/10.1002/anie.200805497 .
Pal A, Bérubé M, Hall D G. Angew Chem Int Ed , 2010 . 49 ( 8 ): 1492 - 1495 . DOI:10.1002/anie.200906620http://doi.org/10.1002/anie.200906620 .
Rauschenberg M, Bomke S, Karst U, Ravoo B J. Angew Chem Int Ed , 2010 . 49 ( 40 ): 7340 - 7345 . DOI:10.1002/anie.201002847http://doi.org/10.1002/anie.201002847 .
Ke C, Destecroix H, Crump M P, Davis A P. Nat Chem , 2012 . 4 ( 9 ): 718 - 723 . DOI:10.1038/nchem.1409http://doi.org/10.1038/nchem.1409 .
Mooibroek T J, Crump M P, Davis A P. Org Biomol Chem , 2016 . 14 1930 - 1933 . DOI:10.1039/C6OB00023Ahttp://doi.org/10.1039/C6OB00023A .
Tromans R A, Carter T S, Chabanne L, Crump M P, Li H Y, Matlock J V, Orchard M G, Davis A P. Nat Chem , 2019 . 11 52 - 56 . DOI:10.1038/s41557-018-0155-zhttp://doi.org/10.1038/s41557-018-0155-z .
Tromans R A, Samanta S K, Chapman A M, Davis A P. Chem Sci , 2020 . 11 3223 - 3227 . DOI:10.1039/C9SC05406Ehttp://doi.org/10.1039/C9SC05406E .
Yao X Y, Li T, Wang J, Ma X, Tian H. Adv Opt Mater , 2016 . 4 1322 - 1349 . DOI:10.1002/adom.201600281http://doi.org/10.1002/adom.201600281 .
Moulin E, Armao IV J J, Giuseppone N. Acc Chem Res , 2019 . 52 975 - 983 . DOI:10.1021/acs.accounts.8b00536http://doi.org/10.1021/acs.accounts.8b00536 .
Xing H, Li Z D, Wang W B, Liu P R, Liu J K, Song Y, Wu Z L, Zhang W K, Huang F H. CCS Chem , 2019 . 1 513 - 523 . DOI:10.31635/ccschem.019.201900043http://doi.org/10.31635/ccschem.019.201900043 .
Gassensmith J J, Arunkumar E, Barr L, Baumes J M, Divittorio K M, Johnson J R, Smith B D. J Am Chem Soc , 2007 . 129 ( 48 ): 15054 - 15059 . DOI:10.1021/ja075567vhttp://doi.org/10.1021/ja075567v .
Scheffold F, Díaz-Leyva P, Reufer M, Braham N B, Lynch I, Harden J L. Phys Rev Lett , 2010 . 104 128304 DOI:10.1103/PhysRevLett.104.128304http://doi.org/10.1103/PhysRevLett.104.128304 .
Wu C, Zhou S Q. Macromolecules , 1997 . 30 574 - 576 . DOI:10.1021/ma960499ahttp://doi.org/10.1021/ma960499a .
Tang Z, Guan Y, Zhang Y J. Polym Chem , 2018 . 9 1012 - 1021 . DOI:10.1039/C8PY00072Ghttp://doi.org/10.1039/C8PY00072G .
Burtis C A, Ashwood E R. Tietz Textbook of Clinical Chemistry, 3rd ed. Philadelphia: Elsevier Health Sciences, 1999
Clarke W L, Cox D, Gonder-Frederick L A, Carter W, Pohl S L. Diabetes Care , 1987 . 10 622 - 628 . DOI:10.2337/diacare.10.5.622http://doi.org/10.2337/diacare.10.5.622 .
Zhou M M, Xie J D, Yan S T, Jiang X M, Ye T, Wu W T. Macromolecules , 2014 . 47 6055 - 6066 . DOI:10.1021/ma501178ahttp://doi.org/10.1021/ma501178a .
Nichols J. Diabetes Technol Ther , 2005 . 7 ( 3 ): 558 - 562 . DOI:10.1089/dia.2005.7.558http://doi.org/10.1089/dia.2005.7.558 .
0
Views
36
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution