Xiao-bo Hu, Yao Yang, Bin-bo Jiang, Jing-dai Wang, Yong-rong Yang. Chain Structure and Mechanical Properties of Ethylene Copolymers in Two Operating Modes of Fluidized Bed Polymerization Reactor. [J]. Acta Polymerica Sinica 52(2):186-195(2021)
DOI:
Xiao-bo Hu, Yao Yang, Bin-bo Jiang, Jing-dai Wang, Yong-rong Yang. Chain Structure and Mechanical Properties of Ethylene Copolymers in Two Operating Modes of Fluidized Bed Polymerization Reactor. [J]. Acta Polymerica Sinica 52(2):186-195(2021) DOI: 10.11777/j.issn1000-3304.2020.20140.
Chain Structure and Mechanical Properties of Ethylene Copolymers in Two Operating Modes of Fluidized Bed Polymerization Reactor
Two ethylene/1-butene/1-hexene terpolymers (sample A and sample B) produced in the fluidized bed polymerization reactor with two different operation modes were fractionated by prepared temperature rising elution fractionation (P-TREF)
and the structures of obtained fractions were characterized by the gel permeation chromatography (GPC)
differential scanning calorimetry (DSC)
nuclear magnetic resonance (
13
C-NMR)
and successive self-nucleation and annealing thermal analysis (SSA). Meanwhile
the tensile yield strength
tensile strength
impact strength
elongation and haze of these two sampled were also tested according to the National Standard of the People’s Republic of China. Results showed that compared with sample B produced in the condensed operation mode
the sample A produced in the liquid containing operation mode had better tensile yield strength
tensile strength
impact strength
elongation and haze. The relative content and the molecular weight of the low-temperature elution fraction of sample A was lower than those of sample B
but for high-temperature elution fraction
the relative content and the molecular weight of sample A were both higher than those of sample B. Sample A possessed the broader distribution of lamellar thickness than sample B. The distribution of short branches between molecular chains of sample A was also wider than that of sample B. From the analysis of branching degree and molecular weight
sample A’s short chain branches were more likely to grow in the high molecular weight chains than sample B. In summary
the sample A produced in the liquid containing operation mode has more excellent physical performance than sample B produced in the condensed operation mode
which was suitable for the preparation of high-performance stretch film material.
Alizadeh A, McKenna T F. Macromol React Eng , 2014 . 8 419 - 433 . DOI:10.1002/mren.201300165http://doi.org/10.1002/mren.201300165 .
Wu W Q, Yang Y R, Luo G H, Wang J D, Jiang B B, Wang S F, Han G D. US Patent , 9174 . 183 2015 - 11-3.
Chen Meijuan(陈美娟). Investigation of the Sorption and Diffusion in Polyethylene by Gravimetric and NMR Methods and Its Application(基于重量法和核磁共振法的聚乙烯中溶解扩散行为研究及其应用), Doctoral Dissertation of Zhejiang University(浙江大学博士学位论文), 2014
Zhou Y F, Ren C J, Wang J D, Yang Y R. Aiche J , 2013 . 59 1056 - 1065 . DOI:10.1002/aic.13883http://doi.org/10.1002/aic.13883 .
Anantawaraskul S, Soares J, Wood-Adams P M. Fractionation of Semicrystalline Polymers by Crystallization Analysis Fractionationand Temperature Rising Elution Fractionation[M]. Berlin: Springer, 2005: 1 − 54
Starck P. Polym Int , 1996 . 40 111 - 122 . DOI:10.1002/(SICI)1097-0126(199606)40:2<111::AID-PI541>3.0.CO;2-Nhttp://doi.org/10.1002/(SICI)1097-0126(199606)40:2<111::AID-PI541>3.0.CO;2-N .
Zhang F J, Liu J P, Fu Q, Huang H Y, Hu Z J, Yao S, Cai X Y, He T B. J Polym Sci, Part B: Polym Phys , 2002 . 40 813 - 821 . DOI:10.1002/polb.10145http://doi.org/10.1002/polb.10145 .
Zhang M Q, Lynch D T, Wanke S E. J Appl Polym Sci , 2000 . 75 960 - 967 . DOI:10.1002/(SICI)1097-4628(20000214)75:7<960::AID-APP13>3.0.CO;2-Rhttp://doi.org/10.1002/(SICI)1097-4628(20000214)75:7<960::AID-APP13>3.0.CO;2-R .
Desreux V, Spiegels M C. Bull Soc Chim Belg , 1950 . 59 476 - 489 . DOI:10.1002/bscb.19500590707http://doi.org/10.1002/bscb.19500590707 .
Shirayama K, Okada T, Kita S I. J Polym Sci, Part A: Polym Chem , 1965 . 3 907 - 916.
Li R, Yang G X, Liu L. IOP Conference Series: Materials Science and Engineering , 2020 . 774 12 - 26 . DOI:10.1088/1757-899X/774/1/012026http://doi.org/10.1088/1757-899X/774/1/012026 .
Li P, Xue Y H, Liu W, Sun G P, Ji X L. J Polym Res , 2019 . 26 56 DOI:10.1007/s10965-019-1715-7http://doi.org/10.1007/s10965-019-1715-7 .
Arnal M L, Balsamo V, Ronca G, Sánchez A, Müller A J, Canizales E, de Navarro C U. J Therm Anal Calorim , 2000 . 59 451 - 470 . DOI:10.1023/A:1010137408023http://doi.org/10.1023/A:1010137408023 .
Bubeck R A. Mat Sci Eng R , 2002 . 39 1 - 28 . DOI:10.1016/S0927-796X(02)00074-8http://doi.org/10.1016/S0927-796X(02)00074-8 .
Gedde U W, Mattozzi A. Polyethylene Morphology[M]. Berlin: Springer, 2004. 29 − 74
Xu J T, Xu X R, Chen L S, Feng L X. J Mater Sci Lett , 2000 . 19 1541 - 1543 . DOI:10.1023/A:1006716904438http://doi.org/10.1023/A:1006716904438 .
Müller A J, Hernández Z H, Arnal M L, Sánchez J J. Polym Bull , 1997 . 39 465 - 472 . DOI:10.1007/s002890050174http://doi.org/10.1007/s002890050174 .
Zhang M Q, Wanke, S E. Polym Eng Sci , 2003 . 43 1878 - 1888 . DOI:10.1002/pen.10159http://doi.org/10.1002/pen.10159 .
Du Z X, Xu J T, Dong Q, Fan Z Q. Polymer , 2009 . 50 2510 - 2515 . DOI:10.1016/j.polymer.2009.04.006http://doi.org/10.1016/j.polymer.2009.04.006 .
Seger M R, Maciel G E. Anal Chem , 2004 . 76 5734 - 5747 . DOI:10.1021/ac040104ihttp://doi.org/10.1021/ac040104i .
Synthesis of Pyrene Based α-Diimide Nickel Catalysts for Ethylene Polymerization/Copolymerization
Iron Complex Catalysts in Ethylene Reactivity: from Concept to Commercialization
Study on Multi-factor Coupling Aging Kinetics of Polyolefins: Yearly and Monthly Aging Speed Maps
Study on the Relationship between the Orientation Structure of Linear Low-density Polyethylene Cast Film and Barrier Properties
Related Author
No data
Related Institution
Department of Polymer Science and Engineering, University of Science and Technology of China
Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences
Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology
Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences
Department of Chemical Engineering, Tsinghua University