A well dispersed aqueous suspension of reduced graphene oxide (RGO) enriched with silk fibroin nanofibrils and regenerated silk fibroin (RSF) was properly prepared
taking the advantage of the so called selective aggregation of silk fibroin nanofibrils on reduced graphene oxide nanosheets
and then a series of composited sponges with different proportions of RGO and RSF were obtained by the process of freezing and ethanol treatment at low temperature. To improve the pressure-sensitive conductivity of those composited sponges
the extra RGO nanosheets were deposited on the surface of the sponge by solution immersion. SEM observation and mechanical testing showed that the introduction of RGO not only made the corresponding micro/nano structure in RSF based sponge benefit the adhering of extra RGO nanosheets
but also favorited to the mechanical properties of the sponge. Moreover
the RGO/RSF sponges displayed significant strength and elasticity under the completely wet state
and could achieve good compression recovery effect and pressure sensing performance between compression strain of 0%−80%. Among them
the sensitivity of such composited sponge with the optimal proportion of the component could reach 0.15 kPa
−1
regarding its resistance change under low pressure. Also
it worked efficiently under the pressure in the range of 0−17.3 kPa and presented excellent electrical stability and durability. Therefore
such pressure sensing material based on RGO/RSF sponge is expected to apply in energy-saving and environmental friendly flexible electronic devices due to its high sensitivity
wide working range
adjustable structure
renewability
good plasticity and so on.
关键词
还原氧化石墨烯丝蛋白多孔复合材料压力传感
Keywords
Reduced graphene oxideSilk fibroinSpongesPressure sensing material
references
Zhan Z Y, Lin R Z, Tran V, An J N, Wei Y F, Du H J, Tran T, Lu W Q. ACS Appl Mater Interfaces , 2017 . 9 ( 43 ): 37921 - 37928 . DOI:10.1021/acsami.7b10820http://doi.org/10.1021/acsami.7b10820 .
Wang S, Ning H M, Hu N, Liu Y L, Liu F, Zou R, Huang K Y, Wu X P, Weng S Y, Alamusi. Adv Mater Interfaces , 2020 . 7 ( 1 ): 1901507 DOI:10.1002/admi.201901507http://doi.org/10.1002/admi.201901507 .
Luo Z W, Hu X T, Tian X Y, Luo C, Xu H J, Li Q L, Li Q H, Zhang J, Qiao F, Wu X, Borisenko V E, Chu J H. Sensors , 2019 . 19 ( 5 ): 1250 DOI:10.3390/s19051250http://doi.org/10.3390/s19051250 .
Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. ACS Nano , 2014 . 8 ( 5 ): 5154 - 5163 . DOI:10.1021/nn501204thttp://doi.org/10.1021/nn501204t .
Hu J S, Yu J S, Li Y, Liao X Q, Yan X W, Li L. Nanomaterials , 2020 . 10 ( 4 ): 664 DOI:10.3390/nano10040664http://doi.org/10.3390/nano10040664 .
Kim I, Woo K, Zhong Z Y, Ko P, Jang Y, Jung M H, Jo J, Kwon S, Lee S H, Lee S, Youn H, Moon J. Nanoscale , 2018 . 10 ( 17 ): 7890 - 7897 . DOI:10.1039/C7NR09421Chttp://doi.org/10.1039/C7NR09421C .
Wang G S, Yang P, Chen B L, Liu G J, Qiu J. Nanotechnology , 2020 . 31 ( 13 ): 135501 DOI:10.1088/1361-6528/ab5dffhttp://doi.org/10.1088/1361-6528/ab5dff .
Lv B, Chen X T, Liu C G. Sensors , 2020 . 20 ( 4 ): 1219 DOI:10.3390/s20041219http://doi.org/10.3390/s20041219 .
Jason N N, Ho M D, Cheng W L. J Mater Chem C , 2017 . 5 ( 24 ): 5845 - 5866 . DOI:10.1039/C7TC01169Ehttp://doi.org/10.1039/C7TC01169E .
Wang Z W, Cong Y, Fu J. J Mater Chem B , 2020 . 8 ( 16 ): 3437 - 3459 . DOI:10.1039/c9tb02570ghttp://doi.org/10.1039/c9tb02570g .
Huang Y, Fan X Y, Chen S C, Zhao N. Adv Funct Mater , 2019 . 29 ( 12 ): 1808509 DOI:10.1002/adfm.201808509http://doi.org/10.1002/adfm.201808509 .
Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G, Kim K. Nature , 2012 . 490 ( 7419 ): 192 - 200 . DOI:10.1038/nature11458http://doi.org/10.1038/nature11458 .
Yu X G, Li Y Q, Zhu W B, Huang P, Wang T T, Hu N, Fu S Y. Nanoscale , 2017 . 9 ( 20 ): 6680−6685 DOI:10.1039/c7nr01011ghttp://doi.org/10.1039/c7nr01011g .
Wang C H, Ding Y J, Yuan Y, Cao A Y, He X D, Peng Q Y, Li Y B. Small , 2016 . 12 ( 30 ): 4070−4076 DOI:10.1002/smll.201601905http://doi.org/10.1002/smll.201601905 .
Su D H, Yao M, Liu J, Zhong Y M, Chen X, Shao Z Z. ACS Appl Mater Interfaces , 2017 . 9 ( 20 ): 17489 - 17498 . DOI:10.1021/acsami.7b04623http://doi.org/10.1021/acsami.7b04623 .
Wen J C, Yao J R, Chen X, Shao Z Z. ACS Omega , 2018 . 3 ( 3 ): 3396 - 3405 . DOI:10.1021/acsomega.7b01874http://doi.org/10.1021/acsomega.7b01874 .
Fu C J, Porter D, Shao Z Z. Macromolecules , 2009 . 42 ( 20 ): 7877 - 7880 . DOI:10.1021/ma901321khttp://doi.org/10.1021/ma901321k .
Wang Y X, Song Y F, Wang Y, Chen X, Xia Y Y, Shao Z Z. J Mater Chem A , 2015 . 3 ( 2 ): 773 - 781 . DOI:10.1039/c4ta04772ahttp://doi.org/10.1039/c4ta04772a .
Ling S J, Li C X, Adamcik J, Wang S H, Shao Z Z, Chen X. ACS Macro Lett , 2014 . 3 ( 2 ): 146 - 152 . DOI:10.1021/mz400639yhttp://doi.org/10.1021/mz400639y .
Gao H L, Zhu Y B, Mao L B, Wang F C, Luo X S, Liu Y Y, Lu Y, Pan Z, Ge J, Shen W, Zheng Y R, Xu L, Wang L J, Xu W H, Wu H A, Yu S H. Nat Commun , 2016 . 7 12920 DOI:10.1038/ncomms12920http://doi.org/10.1038/ncomms12920 .
Regenerated Silk Fibroin Hydrogel with Laponite/Polydopamine Composite Nanoparticles
Enhanced Thermal Conductivity of PI Films by Strengthening Three-dimensional rGO Network Template
Growth and Crystallization of Calcium Phosohate Mediated by Bombyx Mori Silk Fibrion
Related Author
No data
Related Institution
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University
Zhongshan Hospital, Fudan University
Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangdong Key Laboratory of High Performance Polymer Composites, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University