Conductive polymer composites with positive temperature coefficient (PTC) effect have been widely utilized in electronic industry due to their low density
excellent processibility and abundant adjustability. At the melting temperature
the phase transition of crystalline region results in volume expansion
which leads to a dramatic increase in volume resistivity of the composite. Therefore
the PTC performances are highly correlated with the melting process and melt properties of polymer matrix
which means the motion ability of molecules chain during matrix melting affects the performances of the composite such as PTC intensity and reproducibility. Making a thorough inquiry of the effects of polymer molecular motility on PTC behavior is helpful for the design and fabrication of polymer based PTC materials with highly sensitive response to temperature and stable reproducibility in heating-cooling cycles. In this study
the resistance-temperature characteristic of carbon fibers (CF) filled poly(vinylidene fluoride) (PVDF) composites with varied melt viscosity of PVDF was investigated. All the samples showed significant PTC effect during heating processes without negative temperature coefficient (NTC) effect even at temperatures much higher than the melting point of polymer matrix. It can be found that the PTC transition temperature range depended only on the chemical structure and crystallinity of PVDF
while the cyclic stability of PTC behavior was significantly affected by the motion ability of the matrix molecules. For the PVDF(710)/CF composite with matrix of stronger molecular motion
during the heating cycles
the molecular chains possibly stuck to the fillers surface to form an insulating layer
which resulted in wider gaps between fillers and thus reduced tunneling current. After cooling
the reconstruction of conductive paths in composites was impeded
resulting in higher resistivity at room temperature
lower PTC intensity and worse reproducibility. On the contrary
in the PVDF(5130)/CF composites with higher matrix viscosity
the molecular chains with weaker motion ability would not cover CF particles. The composite could almost rebuild the conductive paths to the initial condition after heating-cooling cycles
thus stabilizing a better PTC reproducibility and stable resistivity at room temperature. When applied in the circuit overheat protection device
the PVDF(5130)/CF composite shut off the current timely at 167 °C and recovered the circuit when cooled down
exhibiting excellent sensitivity and reproducibility as thermal responsive switch.
关键词
聚偏氟乙烯导电高分子材料正温度系数分子链运动能力
Keywords
Poly(vinylidene fluoride)Conductive polymer compositePositive temperature coefficientMolecular motility
references
Liu Y, Zhang H, Porwal H, Busfield J J C, Peijs T, Bilotti E . Polym Int , 2019 . 68 ( 3 ): 299 - 305 . DOI:10.1002/pi.5735http://doi.org/10.1002/pi.5735 .
Chen L, Hou J R, Chen Y W, Wang H J, Duan Y X, Zhang J M . Compos Part B Eng , 2019 . 178 107465 DOI:10.1016/j.compositesb.2019.107465http://doi.org/10.1016/j.compositesb.2019.107465 .
Zhang P, Wang B B . J Appl Polym Sci , 2018 . 135 ( 27 ): 46453 DOI:10.1002/app.46453http://doi.org/10.1002/app.46453 .
Liu Y, Zhang H, Porwal H, Tu W, Wang K N, Evans J, Newton M, Busfield J J C, Peijs T, Bilotti E . J Mater Chem C , 2018 . 6 ( 11 ): 2760 - 2768 . DOI:10.1039/c7tc05621dhttp://doi.org/10.1039/c7tc05621d .
Motloung B T, Dudic D, Mofokeng J P, Luyt A S . J Polym Res , 2017 . 24 43 DOI:10.1007/s10965-017-1205-8http://doi.org/10.1007/s10965-017-1205-8 .
Asare E, Basir A, Tu W, Porwal H, Zhang H, Liu Y, Evans J, Newton M, Peijs T, Bilotti E . Nanocomposite , 2016 . 2 ( 2 ): 58 - 64 . DOI:10.1080/20550324.2016.1192796http://doi.org/10.1080/20550324.2016.1192796 .
Zhang X, Zheng S D, Zou H Z, Zheng X F, Liu Z Y, Yang W, Yang M B . Compos Part A: Appl Sci Manuf , 2017 . 94 21 - 31 . DOI:10.1016/j.compositesa.2016.12.001http://doi.org/10.1016/j.compositesa.2016.12.001 .
Kono A, Shimizu K, Nakano H, Goto Y, Kobayashi Y, Ougizawa T, Horibe H . Polymer , 2012 . 53 ( 8 ): 1760 - 1764 . DOI:10.1016/j.polymer.2012.02.048http://doi.org/10.1016/j.polymer.2012.02.048 .
Chen Z, Hsu P C, Lopez J, Li Y, To J W F, Liu N, Wang C, Andrews S C, Liu J, Cui Y, Bao Z N . Nat Energy , 2016 . 1 15009 - 15017 . DOI:10.1038/nenergy.2015.9http://doi.org/10.1038/nenergy.2015.9 .
Zha J W, Wu D H, Yang Y, Wu Y H, Li R K Y, Dang Z M . RSC Adv , 2017 . 7 11338 - 11344 . DOI:10.1039/c6ra27367jhttp://doi.org/10.1039/c6ra27367j .
Jeon J, Lee H B R, Bao Z . Adv Mater , 2013 . 25 ( 6 ): 850 - 855 . DOI:10.1002/adma.201204082http://doi.org/10.1002/adma.201204082 .
Liu Y, Zhang H, Porwal H, Tu W, Evans J, Newton M, Busfield J J C, Peijs T, Bilotti E . Adv Funct Mater , 2017 . 27 ( 39 ): 1702253 - 1702262 . DOI:10.1002/adfm.201702253http://doi.org/10.1002/adfm.201702253 .
Zhao S G, Li G J, Liu H, Dai K, Zheng G Q, Yan X R, Liu C T, Chen J B, Shen C Y, Guo Z H . Adv Mater Interfaces , 2017 . 4 ( 17 ): 1700265 DOI:10.1002/admi.201700265http://doi.org/10.1002/admi.201700265 .
Zhang C, Ma C A, Wang P, Sumita M . Carbon , 2005 . 43 ( 12 ): 2544 - 2553 . DOI:10.1016/j.carbon.2005.05.006http://doi.org/10.1016/j.carbon.2005.05.006 .
Qu Y Y, Xu P, Liu H, Li Q M, Wang N, Zhao S G, Zheng G Q, Dai K, Liu C T, Shen C Y . J Compos Mater , 2019 . 53 ( 14 ): 1897 - 1906 . DOI:10.1177/0021998318815731http://doi.org/10.1177/0021998318815731 .
Tiptipakorn S, Kuengputpong N, Okhawilai M, Rimdusit S . J Appl Polym Sci , 2020 . 137 ( 12 ): 48482 - 48491 . DOI:10.1002/app.48482http://doi.org/10.1002/app.48482 .
Zou Huizhao(邹会昭), Zhang Xi(张习), Zheng Shaodi(郑少笛), Yang Wei(杨伟), Liu Zhengying(刘正英), Yang Mingbo(杨鸣波), Feng Jianming(冯建明) . Acta Polymerica Sinica(高分子学报) , 2017 . ( 8 ): 1215 - 1219 . DOI:10.11777/j.issn1000-3304.2017.17090http://doi.org/10.11777/j.issn1000-3304.2017.17090 .