浏览全部资源
扫码关注微信
1.特种功能高分子材料及其相关技术教育部重点实验室 华东理工大学材料科学与工程学院 上海 200237
2.上海交通大学化学化工学院 上海 200240
3.河南科技大学医学技术与工程学院 洛阳 471000
Published:3 April 2021,
Published Online:20 November 2020,
Received:17 September 2020,
Revised:26 October 2020,
扫 描 看 全 文
Xiang Peng, Kai-qi Wang, Kang-kang Guo, Ya-ping Zhu, Fan Wang, Yun-long Sun, Kun Lei, Hui-min Qi. Preparation and Characterization of SiBCN Precursor Derived from Borazine with High Ceramic Yield. [J]. Acta Polymerica Sinica 52(4):381-387(2021)
Xiang Peng, Kai-qi Wang, Kang-kang Guo, Ya-ping Zhu, Fan Wang, Yun-long Sun, Kun Lei, Hui-min Qi. Preparation and Characterization of SiBCN Precursor Derived from Borazine with High Ceramic Yield. [J]. Acta Polymerica Sinica 52(4):381-387(2021) DOI: 10.11777/j.issn1000-3304.2020.20216.
聚合物先驱体转化法作为制备SiBCN陶瓷及其复合材料的重要途径,具有成型温度低、产物结构和组成可控等优点. 设计合成合适的聚合物先驱体是提高陶瓷产率和性能的关键因素之一,本文采用三氯环硼氮烷(TCB)与乙炔基氯化镁进行反应,合成了乙炔基环硼氮烷,进而与二氯硅烷和二氯甲基乙烯基硅烷进行共氨解反应,制备了聚硼硅氮烷先驱体(PBSZ)并进行了高温裂解. 采用综合热分析(TG-DSG)对其陶瓷化过程进行了分析,并采用XRD和SEM对陶瓷化产物的结构进行了表征. PBSZ在室温下是液态,易溶于二氯甲烷和氯仿等溶剂,可加工性优良. 基于PBSZ先驱体的SiBCN陶瓷产率超过80%;陶瓷化产物在1400 °C以下为无定形状态,在1500 °C可形成由
α
-Si
3
N
4
,
β
-Si
3
N
4
,h-BN和SiO
2
晶体结构组成的陶瓷;陶瓷产物表面致密平整且具有优异的热稳定性和氧化性能,表明聚硼硅氮烷 (PBSZ)有望成为高陶瓷产率和高性能陶瓷的重要先驱体.
The precursor derived ceramics is an efficient and widely used method for preparing the SiBCN ceramics and their composites. This method demonstrates many advantages
such as low molding temperature as well as tunable product structure and composition. In this study
a liquid polyborosilazane precursor (PBSZ) was prepared by the coammonolysis reaction of dichlorosilane
dichloromethylvinylsilane and borazine derivative
which attained by the reaction between ethynyl magnesium chloride and B-trichloroborazine (TCB). After subsequent curing and pyrolysis of PBSZ
the SiBCN ceramic material was obtained. The structures of the PBSZ and the cured PBSZ were characterized by FTIR and
1
H-NMR. Ceramicization process of PBSZ and its structure were investigated by thermogravimetric analysis (TGA)
X-ray diffraction (XRD) and SEM. The results exhibited that PBSZ could be soluble in common organic solvents such as dichloromethane and chloroform
along with excellent fluidity and processability. The ceramic yield of the SiBCN ceramics derived from PBSZ was observed to exceed 80%. The pyrolysis products sintered below 1400 °C exhibited the amorphous microstructures. At 1500 °C
the derived ceramic materials turned out to contain
α
-Si
3
N
4
β
-Si
3
N
4
h-BN and SiO
2
crystals. The SEM analysis revealed that the surface of the pyrolysis products was smooth and dense. Moreover
the SiBCN ceramics exhibited excellent thermal stability and oxidation resistance.
三氯环硼氮烷硼硅碳氮先驱体硼硅碳氮陶瓷陶瓷化
B-trichloroborazineSiBCN ceramic precursorSiBCN ceramicsCeramization
Wang Hao(王浩), Wang Jinlong(王金龙), Gou Yanzi(苟燕子) . Journal of Inorganic Materials(无机材料学报) , 2017 . 32 ( 8 ): 785 - 791 . DOI:10.15541/jim20160524http://doi.org/10.15541/jim20160524 .
Liu Haitao(刘海韬), Yang Lingwei(杨玲伟), Han Shuang(韩爽) . Journal of Inorganic Materials(无机材料学报) , 2018 . 33 ( 7 ): 711 - 720 . DOI:10.15541/jim20170421http://doi.org/10.15541/jim20170421 .
Colombo P, Mera G, Riedel R, Sorarù G D . J Am Ceram Soc , 2010 . 93 ( 7 ): 1805 - 1837.
Baldus H P, Jansen M . Angew Chem Int Ed , 1997 . 36 ( 4 ): 328 - 343 . DOI:10.1002/anie.199703281http://doi.org/10.1002/anie.199703281 .
Birot M, Pillot J P, Dunogues J . Chem Rev , 1995 . 95 ( 5 ): 1443 - 1477 . DOI:10.1021/cr00037a014http://doi.org/10.1021/cr00037a014 .
Kroke E, Li Y L, Konetschny C, Lecomte E, Fasel C, Riedel R . Mater Sci Eng R Rep , 2000 . 26 ( 4-6 ): 97 - 199 . DOI:10.1016/S0927-796X(00)00008-5http://doi.org/10.1016/S0927-796X(00)00008-5 .
Riedel R, Mera G, Hauser R, Klonczynski A . J Ceram Soc Jpn , 2006 . 114 ( 1330 ): 425 - 444 . DOI:10.2109/jcersj.114.425http://doi.org/10.2109/jcersj.114.425 .
Tang Yun(唐云), Wang Jun(王军), Li Xiaodong(李效东), Li Wenhua(李文华), Wang Hao(王浩), Xie Zhengfang(谢征芳), Cao Shuwei(曹淑伟) . Polymer Materials Science & Engineering(高分子材料科学与工程) , 2008 . 24 ( 4 ): 23 - 27 . DOI:10.3321/j.issn:1000-7555.2008.04.006http://doi.org/10.3321/j.issn:1000-7555.2008.04.006 .
Haberecht J, Krumeich F, Gruetzmacher H, Nesper R . Chem Mater , 2004 . 16 ( 3 ): 418 - 423 . DOI:10.1021/cm034832ihttp://doi.org/10.1021/cm034832i .
Haberecht J, Nesper R, Gruetzmacher H . Chem Mater , 2005 . 17 ( 9 ): 2340 - 2347 . DOI:10.1021/cm047820lhttp://doi.org/10.1021/cm047820l .
Fazen P J, Beck J S, Lynch A T, Remsen E E, Sneddon L G . Chem Mater , 1990 . 2 ( 2 ): 96 - 97 . DOI:10.1021/cm00008a004http://doi.org/10.1021/cm00008a004 .
Fazen P J, Remsen E E, Beck J S, Carroll P J, Mcghie A R, Sneddon L G . Chem Mater , 1995 . 7 ( 10 ): 1942 - 1956 . DOI:10.1021/cm00058a028http://doi.org/10.1021/cm00058a028 .
Riedel R, Kienzle A, Dressler W, Ruwisch L, Bill J, Aldinger F . Nature , 1996 . 382 ( 6594 ): 796 - 798 . DOI:10.1038/382796a0http://doi.org/10.1038/382796a0 .
Jaeschke T, Jansen M . J Eur Ceram Soc , 2004 . 25 ( 2-3 ): 211 - 220.
Weinmann M, Schuhmacher J, Kummer H, Prinz S, Peng J Q, Seifert H J, Christ M, Müller K, Bill J, Aldinger F . Chem Mater , 2000 . 12 ( 3 ): 623 - 632 . DOI:10.1021/cm9910299http://doi.org/10.1021/cm9910299 .
Müller A, Peng J Q, Seifert H J, Bill J, Aldinger F . Chem Mater , 2002 . 14 ( 8 ): 3406 - 3412 . DOI:10.1021/cm021179ahttp://doi.org/10.1021/cm021179a .
Lindquist D A, Janik J F, Datye A K, Paine R T, Rothman J B . Chem Mater , 1992 . 4 ( 1 ): 17 - 19 . DOI:10.1021/cm00019a007http://doi.org/10.1021/cm00019a007 .
Bernard S, Salameh C, Miele P . Dalton Trans , 2016 . 45 ( 3 ): 861 - 873 . DOI:10.1039/C5DT03633Jhttp://doi.org/10.1039/C5DT03633J .
Paine R T, Narula C K . Chem Rev , 1990 . 90 ( 1 ): 73 - 91 . DOI:10.1021/cr00099a004http://doi.org/10.1021/cr00099a004 .
Yuan J, Hapis S, Breitzke H, Xu Y P, Fasel C, Kleebe H J, Buntkowsky G, Riedel R, Ionescu E . Inorg Chem , 2014 . 53 ( 19 ): 10443 - 10455 . DOI:10.1021/ic501512phttp://doi.org/10.1021/ic501512p .
Dong S H, Zhao T, Xu C H . Polym Adv Technol , 2011 . 22 ( 12 ): 2474 - 2479 . DOI:10.1002/pat.1786http://doi.org/10.1002/pat.1786 .
Kong J, Wang M J, Zou J H, An L N . ACS Appl Mater & Interfaces , 2015 . 7 ( 12 ): 6733 - 6744.
Li Yihe(李义和), Wang Hao(王浩), Li Xiaodong(李效东), Jin Dongshao(金东杓) . Acta Polymerica Sinica(高分子学报) , 2008 . ( 4 ): 350 - 354 . DOI:10.3321/j.issn:1000-3304.2008.04.008http://doi.org/10.3321/j.issn:1000-3304.2008.04.008 .
Guo X, Feng Y R, Liu Y, Lin X, Zhang Y J, Gong H Y . Ceram Int , 2017 . 43 ( 18 ): 16866 - 16871 . DOI:10.1016/j.ceramint.2017.09.086http://doi.org/10.1016/j.ceramint.2017.09.086 .
Nghiem Q D, Kim D J, Kim D P . Adv Mater. , 2007 . 19 ( 17 ): 2351 - 2354 . DOI:10.1002/adma.200602348http://doi.org/10.1002/adma.200602348 .
Viard A, Fonblanc D, Schmidt M, Lale A, Salameh C, Soleilhavoup A, Wynn M, Champagne P, Cerneaux S, Babonneau F, Chollon G, Rossignol F, Gervais C, Bernard S . Chem-Eur J , 2017 . 23 ( 38 ): 9076 - 9090 . DOI:10.1002/chem.201700623http://doi.org/10.1002/chem.201700623 .
Xing Xin(邢欣), Li Xiaodong(李效东), Liu Lin(刘琳), Fang Qingling(方庆玲), Wang Jun(王军) . Acta Polymerica Sinica(高分子学报) , 2007 . ( 5 ): 428 - 433 . DOI:10.3321/j.issn:1000-3304.2007.05.005http://doi.org/10.3321/j.issn:1000-3304.2007.05.005 .
Hu Haifeng(胡海峰), Chen Zhaohui(陈朝辉), Feng Chunxiang(冯春祥), Zhang Changrui(张长瑞), Song Yongcai(宋永才) . Acta Polymerica Sinica(高分子学报) , 1998 . ( 1 ): 104 - 108 . DOI:10.3321/j.issn:1000-3304.1998.01.019http://doi.org/10.3321/j.issn:1000-3304.1998.01.019 .
Yang Z H, Jia D C, Zhou Y, Yu C Q . Ceram Int , 2007 . 33 ( 8 ): 1573 - 1577 . DOI:10.1016/j.ceramint.2006.06.005http://doi.org/10.1016/j.ceramint.2006.06.005 .
0
Views
36
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution