Heat Resistance and Dimensional Stability of Polyimide Improved by Inhibiting the Dissociation of Hydrogen Bonds at High Temperatures through Crosslinking
返回论文页
Research Article|更新时间:2021-03-05
|
Heat Resistance and Dimensional Stability of Polyimide Improved by Inhibiting the Dissociation of Hydrogen Bonds at High Temperatures through Crosslinking
Long-bo Luo, Xin-he Ye, Jiang Yi, Ke Li, Xiang-yang Liu. Heat Resistance and Dimensional Stability of Polyimide Improved by Inhibiting the Dissociation of Hydrogen Bonds at High Temperatures through Crosslinking. [J]. Acta Polymerica Sinica 52(4):363-370(2021)
DOI:
Long-bo Luo, Xin-he Ye, Jiang Yi, Ke Li, Xiang-yang Liu. Heat Resistance and Dimensional Stability of Polyimide Improved by Inhibiting the Dissociation of Hydrogen Bonds at High Temperatures through Crosslinking. [J]. Acta Polymerica Sinica 52(4):363-370(2021) DOI: 10.11777/j.issn1000-3304.2020.20222.
Heat Resistance and Dimensional Stability of Polyimide Improved by Inhibiting the Dissociation of Hydrogen Bonds at High Temperatures through Crosslinking
Polyimide (PI) containing benzimidazole structure exhibits good heat resistance and dimensional stability due to the intermolecular hydrogen bonding
which is regarded as promising substrate material for OLED flexible display devices. However
the dissociation of hydrogen bonds at high temperatures results in PI film high thermal expansion coefficient in the temperature range above 300 °C
limiting the practicality of the PI film as the flexible display substrate material. In this study
the dianhydride containing alkynyl structure was introduced into the PI’s main chain
and chemically restricted sites were constructed by chemical crosslinking reactions to suppress the dissociation of hydrogen bonds at high temperatures
thereby improving the thermal performance of the PI film. The results show that
compared with linear polyimide
the hydrogen bonding content of PI at 400 °C is increased by nearly 50% after crosslinking. Correspondingly
the glass transition temperature of the chemically cross-linked PI film is as high as 452 °C
and the thermal expansion coefficient in the range of 40−400 °C is only 2.1×10
−6
/K. And the tensile strength of obtained PI film reaches 230.9 MPa. This PI film would be as potential substrate material for flexible display devices.
Bai Lan(白兰), Zhai Lei(翟磊), He Minhui(何民辉), Wang Changou(王畅鸥), Mo Song(莫松), Fan Lin(范琳) . Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 12 ): 1305 - 1313 . DOI:10.11777/j.issn1000-3304.2019.19099http://doi.org/10.11777/j.issn1000-3304.2019.19099 .
Xu Zhiping(许志平). Study on Flexible Polyimide Substrate for Active Matrix Organic Light Emitting Diodes Display (用于AMOLED显示的聚酰亚胺柔性衬底研究). Doctoral Dissertation of South China University of Technology(华南理工大学博士论文), 2017
Bai L, Zhai L, He M H, Wang C O, Mo S, Fan L . Chinese J Polym Sci , 2020 . 38 ( 7 ): 748 - 758 . DOI:10.1007/s10118-020-2366-1http://doi.org/10.1007/s10118-020-2366-1 .
Wang Z H, Chen X, Yang H X, Zhao J, Yang S Y . Chinese J Polym Sci , 2019 . 37 ( 3 ): 268 - 278 . DOI:10.1007/s10118-019-2173-8http://doi.org/10.1007/s10118-019-2173-8 .
Wang S, Zhou H, Dang G, Chen C . J Polym Sci, Part A: Polym Chem , 2009 . 47 ( 8 ): 2024 - 2031 . DOI:10.1002/pola.23306http://doi.org/10.1002/pola.23306 .
Sun M, Chang J, Tian G, Niu H, Wu D . J Mater Sci , 2016 . 51 ( 6 ): 2830 - 2840.
Luo L, Zhang J, Huang J, Feng Y, Peng C, Wang X, Liu X . J Appl Polym Sci , 2016 . 133 ( 39 ): 44000 DOI:10.1002/app.44000http://doi.org/10.1002/app.44000 .
Yue Z, Cai Y B, Xu S . J Polym Res , 2014 . 21 ( 6 ): 463 - 470 . DOI:10.1007/s10965-014-0463-yhttp://doi.org/10.1007/s10965-014-0463-y .
Lian M, Lu X, Lu Q . Macromolecules , 2018 . 51 ( 24 ): 10127 - 10135 . DOI:10.1021/acs.macromol.8b02282http://doi.org/10.1021/acs.macromol.8b02282 .
Tian Y Y, Luo L B, Yang Q Q, Zhang L J, Wang M, Wu D F, Wang X, Liu X Y . Polymer , 2020 . 188 122100 DOI:10.1016/j.polymer.2019.122100http://doi.org/10.1016/j.polymer.2019.122100 .
Skrovanek D J, Howe S E, Painter P C, Coleman M M . Macromolecules , 1985 . 18 ( 9 ): 1676 - 1683 . DOI:10.1021/ma00151a006http://doi.org/10.1021/ma00151a006 .
Skrovanek D J, Painter P C, Coleman M M . Macromolecules , 1986 . 19 ( 3 ): 699 - 705 . DOI:10.1021/ma00157a037http://doi.org/10.1021/ma00157a037 .
Fang X, Hutcheon R, Scola D A . J Polym Sci, Part A: Polym Chem , 2000 . 38 ( 14 ): 2526 - 2535 . DOI:10.1002/1099-0518(20000715)38:14<2526::AID-POLA20>3.0.CO;2-2http://doi.org/10.1002/1099-0518(20000715)38:14<2526::AID-POLA20>3.0.CO;2-2 .
Dai Y, Feng J, Meng C, Luo L, Liu X . ChemistrySelect , 2019 . 4 ( 13 ): 3980 - 3983 . DOI:10.1002/slct.201900463http://doi.org/10.1002/slct.201900463 .
Ebisawa S, Ishii J, Sato M, Vladimirov L, Hasegawa M . Eur Polym J , 2010 . 46 ( 2 ): 283 - 297 . DOI:10.1016/j.eurpolymj.2009.10.015http://doi.org/10.1016/j.eurpolymj.2009.10.015 .
Ishii J, Shimizu N, Ishihara N, Ikeda Y, Sensui N, Matano T, Hasegawa M . Eur Polym J , 2010 . 46 ( 1 ): 69 - 80 . DOI:10.1016/j.eurpolymj.2009.09.002http://doi.org/10.1016/j.eurpolymj.2009.09.002 .
Ishii J, Takata A, Oami Y, Yokota R, Vladimirov L, Hasegawa M . Eur Polym J , 2010 . 46 ( 4 ): 681 - 693 . DOI:10.1016/j.eurpolymj.2010.01.007http://doi.org/10.1016/j.eurpolymj.2010.01.007 .
Luo L B, Yao J, Wang X, Li K, Huang J Y, Li B Y, Wang H N, Feng Y, Liu X Y . Polymer , 2014 . 55 ( 16 ): 4258 - 4269 . DOI:10.1016/j.polymer.2014.06.080http://doi.org/10.1016/j.polymer.2014.06.080 .
Preparation and Properties of Composite Proton Exchange Membranes from Tröger's Base-based Polyimides/Polybenzimidazoles for Fuel Cells Operating in a Wide Temperature Range
Preparation and Performance of Thermally Rearranged Gas Separation Membranes Containing Tetraarylimidazole Structure
Preparation, Processing and Thermal Properties of Naphthaleneethynyl-terminated Silica-containing Polyimides
Preparation of Colorless Transparent Polyimide Films with High Comprehensive Properties
Preparation and Properties of Colorless Transparent Polyimide Films Based on Rigid Alicyclic Tetracarboxylic Anhydride
Related Author
No data
Related Institution
School of Chemical Engineering, University of Chinese Academy of Sciences
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
Chemistry and Environmental Engineering, Yangtze University
Carbon Research Laboratory, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
School of Chemical Engineering, University of Science and Technology Liaoning