A series of microcellular thermoplastic polyurethane foams with different apparent densities were prepared by temperature-increasing foaming method with high-pressure CO
2
as blowing agent
and the relationship between the apparent density and mechanical properties was investigated. The structure of microcellular thermoplastic foam was characterized by scanning electron microscopy. The mechanical properties of the materials with different apparent densities were characterized by universal material testing machine and rotational rheometer. The results show that the apparent density of the microcellular thermoplastic polyurethane foam is mainly determined by the thickness ratio of the skin layer and the area occupation of cell. The smaller the ratio of the thickness of the skin layer and the higher the area occupation of cell
the smaller the foam density; the relationship between compression modulus
E
and apparent density
ρ
of the samples in the linear strain region is as follows:
E
∝
ρ
1.7
which is consistent with the basic conclusion that the relationship between modulus and density of foam materials is exponential; in the cyclic compression experiment
as the density of the foam material decreases
the residual strain decreases
and the hysteresis increase; in the rheological experiment
the modulus of the foamed material does not change significantly with the density
and the damping factor tan
δ
does not vary monotonically with the foam density. At the same time
the dependence of compression modulus
E
and hysteresis with foam density was also explained.
Zhang W, Lei Y, Li X T, Shao H M, Xu W D, Li D S . Mater Lett , 2020 . 267 127542 DOI:10.1016/j.matlet.2020.127542http://doi.org/10.1016/j.matlet.2020.127542 .
Sung G, Kim J S, Kim J H . Polym Adv Technol , 2018 . 29 ( 2 ): 852 - 859 . DOI:10.1002/pat.4195http://doi.org/10.1002/pat.4195 .
Philip C, Miller T, Sina T . Polym Polym Compos , 1999 . 7 ( 2 ): 117 - 124.
Wang X C, Jing X, Peng Y Y, Ma Z K, Liu C T, Turng L S, Shen C Y . Polym Eng Sci , 2016 . 56 ( 3 ): 319 - 327 . DOI:10.1002/pen.24257http://doi.org/10.1002/pen.24257 .
Wang G L, Wan G P, Chai J L, Li B, Zhao G Q, Mu Y, Park C B. J . Supercrit Fluids , 2019 . 149 127 - 137 . DOI:10.1016/j.supflu.2019.04.004http://doi.org/10.1016/j.supflu.2019.04.004 .
Kumar V, Suh N P . Polym Eng Sci , 1990 . 30 ( 20 ): 1323 - 1329 . DOI:10.1002/pen.760302010http://doi.org/10.1002/pen.760302010 .
Ge C B, Wang S P, Zhai W T . J Cell Plast , 2020 . 56 ( 2 ): 207 - 226 . DOI:10.1177/0021955X19864381http://doi.org/10.1177/0021955X19864381 .
Ge Chengbiao(戈成彪). Microcellular Thermoplastic Polyurethane Foam: Structural Regulation and Performance(微孔热塑性聚氨酯泡沫结构调控与性能研究). Doctoral Dissertation of University of Chinese Academy of Sciences(中国科学院大学(中国科学院宁波材料技术与工程研究所)博士学位论文), 2018
Zhang Huanhuan(张欢欢), Wang Jie(王杰), Huang Gang(黄刚), Zhan Hongjun(占宏君), Shi Tongfei(石彤非),Xu Donghua(许东华), Yao Weiguo(姚卫国) . Acta Polymerica Sinica(高分子学报) , 2016 . ( 10 ): 1447 - 1454 . DOI:10.11777/j.issn1000-3304.2016.16040http://doi.org/10.11777/j.issn1000-3304.2016.16040 .
Shen Q, Xiong Y L, Yuan H, Luo G Q, Liang X, Zhang L M . J Phys: Conf Ser , 2013 . 419 012009 DOI:10.1088/1742-6596/419/1/012009http://doi.org/10.1088/1742-6596/419/1/012009 .
Tang M, Huang G, Zhang H H, Liu Y L, Chang H J, Song H Z, Xu D H, Wang Z G . ACS Omega , 2017 . 2 ( 5 ): 2214 - 2223 . DOI:10.1021/acsomega.7b00242http://doi.org/10.1021/acsomega.7b00242 .
Hilyard, N. C. Low Density Cellular Plastics Physical Basis of Behaviour. London: Chapman and Hall, 1994. 1−20
Chen Y J, Li T, Xu D H, Zhai W T . RSC Adv , 2015 . 5 ( 100 ): 82034 - 82041 . DOI:10.1039/C5RA12515Dhttp://doi.org/10.1039/C5RA12515D .
Wang X C, Zhu Q S, Dong B B, Wu H H, Liu C T, Shen C Y, Turng L S, Geng T . Polym Test , 2019 . 79 106043 DOI:10.1016/j.polymertesting.2019.106043http://doi.org/10.1016/j.polymertesting.2019.106043 .
Progelhof R C, Throne J L . Polym Eng Sci , 1979 . 19 ( 7 ): 493 - 499 . DOI:10.1002/pen.760190706http://doi.org/10.1002/pen.760190706 .
Glassy Hydrogels: From New State to High Performances of Gel Materials
Hydrogen-bonded Supramolecular Polymeric Materials: From Structure and Performance to Functionality and Application
Mechanical Properties and Mullins Effect of Ethylene Propylene Diene Monomer Vulcanizes Reinforced with Silica Powders with Different Micropore Structures
Strong and Tough Chitosan Aerogels via Hofmeister Effect
Progress on Intrinsically Flame-retardant Bio-based Epoxy Thermosets
Related Author
No data
Related Institution
Department of Polymer Science and Engineering, Zhejiang University
College of Materials Science and Engineering, Qingdao University
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University
Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
Zheda Institute of Advanced Materials and Chemical Engineering