浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
Yan-hua Niu, E-mail: yhniu@scu.edu.cnGuang-xian Li, E-mail: guangxianli@scu.edu.cn
Yan-hua Niu, E-mail: yhniu@scu.edu.cnGuang-xian Li, E-mail: guangxianli@scu.edu.cn
Published:20 July 2021,
Published Online:18 May 2021,
Received:04 November 2020,
Revised:25 January 2021,
扫 描 看 全 文
李杲,卓文越,杨国等.多因素耦合作用下丁腈橡胶的老化行为和机理研究[J].高分子学报,2021,52(07):762-774.
Gao Li, Wen-yue Zhuo, Guo Yang, Yan-hua Niu, Guang-xian Li. Study on the Aging Behaviors and Mechanism of Nitrile Rubber under Multiple Coupled Factors. [J]. ACTA POLYMERICA SINICA 52(7):762-774(2021)
李杲,卓文越,杨国等.多因素耦合作用下丁腈橡胶的老化行为和机理研究[J].高分子学报,2021,52(07):762-774. DOI: 10.11777/j.issn1000-3304.2020.20246.
Gao Li, Wen-yue Zhuo, Guo Yang, Yan-hua Niu, Guang-xian Li. Study on the Aging Behaviors and Mechanism of Nitrile Rubber under Multiple Coupled Factors. [J]. ACTA POLYMERICA SINICA 52(7):762-774(2021) DOI: 10.11777/j.issn1000-3304.2020.20246.
采用加速老化试验研究了丁腈橡胶在温度、介质环境和压缩形变3种不同因素耦合下的老化行为. 通过表征分析压缩永久形变率、官能团、热稳定性、交联密度、玻璃化转变温度及微观形貌等的变化,评价了老化前后试样宏观性能和微观结构的变化. 老化过程中,同时存在增塑剂挥发、后交联、油介质扩散以及试样表面氰基的部分水解反应. 全反射红外(ATR-FTIR)结果表明,热空气条件下,高温老化过程中增塑剂挥发明显;而油介质的存在抑制了试样表面残存水分的挥发,进而发生氰基水解反应;压缩产生的试样侧表面拉应力可进一步促进表面氰基的水解. 热失重(TGA)结果表明,相较于热空气,油介质老化中存在增塑剂挥发和介质扩散的相互竞争效应. 压缩永久形变率、交联密度和玻璃化转变温度结果表明,与热空气老化相比,油介质明显抑制了橡胶的后交联反应,而压缩可能对后交联有促进作用. 所有试验条件下的老化均以后交联为主导,未观察到明显的断链或降解.
Accelerated aging tests were employed to study the aging behaviors of nitrile rubber under the coupling conditions of temperature
oil medium and compression. Physical properties and chemical structures of the aged samples were evaluated by the changes of compression set
functional groups
thermal stability
crosslinking density
glass transition temperature and microscopic morphologies
etc
. During the aging process
the volatilization of plasticizer
post-crosslinking
oil diffusion and hydrolysis of cyano groups partially on the surface of the samples could simultaneously occur. Attenuated total reflection-fourier transform infrared (ATR-FTIR) results indicated that under the air condition
the volatilization of plasticizer is dominated at higher temperature. However
under oil medium condition
the presence of oil could inhibit the volatilization of residual moisture on the surface of the samples
and then hydrolysis reaction of the cyano groups occurred
which could be further promoted by the tensile stress on the lateral surface of the sample induced by compression. Thermogravimetric analysis (TGA) results suggested that there is a competition between plasticizer volatilization and oil diffusion under oil medium condition
which is different from the situation under air condition. The results of compression set
crosslinking density and glass transition temperature showed that the oil medium could significantly inhibit the post-crosslinking of the rubber compared with that aged in air
while compression may promote it. The aging under all test conditions was dominated by post-crosslinking and no obvious chain scission or degradation was observed.
丁腈橡胶加速老化油介质压缩交联密度
Nitrile rubberAccelerated agingOil mediumCompressionCrosslinking density
Zhao J H, Yang R, Iervolino R, Vorst B V D, Barbera S. Polym Degrad Stabil, 2015, 115: 32-37. doi:10.1016/j.polymdegradstab.2015.02.013http://dx.doi.org/10.1016/j.polymdegradstab.2015.02.013
Perraud S, Vallat M F, David M O, Kuczynski J. Polym Degrad Stabil, 2010, 95: 1495-1501. doi:10.1016/j.polymdegradstab.2010.06.016http://dx.doi.org/10.1016/j.polymdegradstab.2010.06.016
Liu J, Li X, Xu L, Zhang P. Polym Test, 2016, 54: 59-66. doi:10.1016/j.polymertesting.2016.06.010http://dx.doi.org/10.1016/j.polymertesting.2016.06.010
Ahmed F S, Shafy M, Abd El-Megeed AA, Hegazi E M. Mater Design, 2012, 36: 823-828. doi:10.1016/j.matdes.2011.02.066http://dx.doi.org/10.1016/j.matdes.2011.02.066
Grassie N, Heaney A. Eur Polym J, 1974, 10: 415-424. doi:10.1016/0014-3057(74)90206-7http://dx.doi.org/10.1016/0014-3057(74)90206-7
Budrugeac P. Polym Degrad Stabil, 1995, 47: 129-132. doi:10.1016/0141-3910(94)00101-dhttp://dx.doi.org/10.1016/0141-3910(94)00101-d
Liu X, Zhao J H, Yang R, Iervolino R, Barbera S. Polym Degrad Stabil, 2018, 151: 136-143. doi:10.1016/j.polymdegradstab.2018.03.004http://dx.doi.org/10.1016/j.polymdegradstab.2018.03.004
Zhao J H, Yang R, Iervolino R, Barbera S. J Appl Polym Sci, 2015, 132: 41319. doi:10.1002/app.41319http://dx.doi.org/10.1002/app.41319
Akhlaghi S, Hedenqvist M S , Brana M T C, Bellander M, Gedde U W. Polym Degrad Stabil, 2015, 111: 211-222. doi:10.1016/j.polymdegradstab.2014.11.012http://dx.doi.org/10.1016/j.polymdegradstab.2014.11.012
Alves S M, Mello V S, Medeiros J S. Tribol Int, 2013, 65: 74-80. doi:10.1016/j.triboint.2013.03.026http://dx.doi.org/10.1016/j.triboint.2013.03.026
Linhares F N, Correa H L, Khalil C N, Leite M C A M, Furtado C R G. Energy, 2013, 49: 102-106. doi:10.1016/j.energy.2012.10.040http://dx.doi.org/10.1016/j.energy.2012.10.040
Linhares F H, Kersch M, Niebergall U, Leite M C A M, Atlstadt V, Furtado C R G. Fuel, 2017, 191: 130-139. doi:10.1016/j.fuel.2016.11.060http://dx.doi.org/10.1016/j.fuel.2016.11.060
Jin Z, He L, Zhao Y L. J Fail Anal Preven, 2017, 17: 774-779. doi:10.1007/s11668-017-0303-6http://dx.doi.org/10.1007/s11668-017-0303-6
Feng D, Shen M X, Peng X D, Meng X K. Tribol Lett, 2017, 65: 10. doi:10.1007/s11249-016-0793-5http://dx.doi.org/10.1007/s11249-016-0793-5
Buckley G S, Roland C M. J Appl Polym Sci, 2014, 131: 40296. doi:10.1002/app.40296http://dx.doi.org/10.1002/app.40296
Pazur R J, Cormier J G, Korhan-Taymaz K. Rubber Chem Technol, 2014, 87: 239-249. doi:10.5254/rct.13.87916http://dx.doi.org/10.5254/rct.13.87916
Xiong Y, Chen G S, Guo S Y, Li G X. J Ind Eng Chem, 2013, 19: 1611-1616. doi:10.1016/j.jiec.2013.01.031http://dx.doi.org/10.1016/j.jiec.2013.01.031
Lou W T, Zhang W F, Liu X R, Dai W, Xu D. Polym Degrad Stabil, 2017, 144: 464-472. doi:10.1016/j.polymdegradstab.2017.09.009http://dx.doi.org/10.1016/j.polymdegradstab.2017.09.009
Ci Y X, Gao T Y, Dong J Q, Kan X, Guo Z Q. Chinese Sci Bull, 1999, 44, 2215-2221
Kawasaki T, Yaji T, Ohta T, Tsukiyama K. J Synchrotron Radiat, 2016, 23: 152-157. doi:10.1107/s1600577515020731http://dx.doi.org/10.1107/s1600577515020731
Cong Chuanbo(丛川波), Zou Gongwen(邹功文), Meng Xiaoyu(孟晓宇), Zhou Qiong(周琼). Polymer Materials Science and Engineering(高分子材料科学与工程), 2016, 32: 118-123. doi:10.16865/j.cnki.1000-7555.2016.03.022http://dx.doi.org/10.16865/j.cnki.1000-7555.2016.03.022
Ouyang Jianglin(欧阳江林). Jianghan Petroleum Science and Technology(江汉石油科技), 2017, 27: 84-86
Kadlcak J, Kuritka I, Tunnicliffe L B, Cermak R. J Appl Polym Sci, 2015, 132: 41976. doi:10.1002/app.41976http://dx.doi.org/10.1002/app.41976
Barjasteh E, Kar N, Nutt S R. Compos Part A-Appl S, 2011, 42: 1873-1882. doi:10.1016/j.compositesa.2011.08.006http://dx.doi.org/10.1016/j.compositesa.2011.08.006
Shaw M T, MacKnight WJ. Introduction to Polymer Viscoelasticity, 3rd ed. New York: Wiley, 2005. 51-106
Bandzierz K, Reuvekamp L, Dryzek J, Dierkes W, Blume A, Bielinski D. Materials, 2016, 9: 607. doi:10.3390/ma9070607http://dx.doi.org/10.3390/ma9070607
0
Views
56
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution