浏览全部资源
扫码关注微信
南开大学 功能高分子材料教育部重点实验室 化学学院 天津 300071
Published:20 July 2021,
Published Online:06 April 2021,
Received:25 November 2020,
Revised:24 December 2020,
扫 描 看 全 文
王粉粉,孙平川.固体核磁共振技术在高分子表征研究中的应用,[J].高分子学报,2021,52(07):840-856.
Fen-fen Wang, Ping-chuan Sun. Solid-state NMR Characterization of Polymers. [J]. ACTA POLYMERICA SINICA 52(7):840-856(2021)
王粉粉,孙平川.固体核磁共振技术在高分子表征研究中的应用,[J].高分子学报,2021,52(07):840-856. DOI: 10.11777/j.issn1000-3304.2020.20254.
Fen-fen Wang, Ping-chuan Sun. Solid-state NMR Characterization of Polymers. [J]. ACTA POLYMERICA SINICA 52(7):840-856(2021) DOI: 10.11777/j.issn1000-3304.2020.20254.
基于核自旋探针的核磁共振(NMR)波谱技术可以在非常宽广的时间和空间尺度上提供重要的微观结构和动力学信息. 固体NMR已成为阐明高分子中化学键变化、链间相互作用、多尺度结构与动力学演化,及其与宏观物理化学性质关系的有力工具. 本文从基础原理、实验方法与技巧、典型应用与研究进展等几方面进行简要综述. 在基础原理部分介绍了化学位移各向异性和偶极相互作用等检测不同尺度信息的核自旋相互作用及其实验调控方法,魔角旋转、交叉极化和多脉冲去耦等高分辨技术,以及自旋扩散测定相区结构及复杂分子运动检测方法的原理等;在实验方法与技巧上,着重仪器精确校准、关键脉冲参数设置及仪器背景信号压制等;典型应用将聚焦于天然高分子及其复合材料的结构-性能关系、水与生物大分子间相互作用、多相高分子材料的微相分离结构、高分子中氢键相互作用和导电高分子材料等问题,介绍了固体NMR技术在上述领域的最新应用与进展.
Nuclear magnetic resonance (NMR) techniques based on the nuclear spins can provide important information on microscopic structure and dynamics in a very broad length and time scale. With the booming development of NMR theory and instruments
solid-state NMR (SSNMR) is playing an increasingly important role in the field of polymer material researches. SSNMR has gradually become a powerful tool for the characterization of structure and dynamics of macromolecules
changes of chemical bonds
interactions between polymer chains
relationships between the microstructure and macroscopic chemical/physical properties
which almost covers all areas of polymer researches and is suitable for different polymer systems including polymer solutions
melts
gels
liquid crystals
crystalline and amorphous solids
etc
. SSNMR not only plays an important role in elucidating the relationship between structure and properties for polymer materials
but also is of great significance for developing the theory of polymeric condensed physics
which has given a significant impulse to the development of polymer science. In this paper
the basic principles
experimental methods and skills
typical applications and progresses in polymer science are briefly reviewed. In the section of basic principles
the nuclear spin interactions and its experimental manipulation methods for detecting information on different length scales
such as chemical shift anisotropy and dipolar interactions
high-resolution SSNMR techniques such as magic-angle spinning
cross-polarization and multiple pulse decoupling
as well as the principles of spin diffusion method for measuring microdomain and interphase structures
and complex molecular motion on different time scale
are introduced. In the section of experimental methods and skills
we pay great attention to accurate calibration of the SSNMR instrument
key setting of the pulse parameter and background signal suppression of the instrument. In the section of typical applications and progresses
we focus on different topics including the structure property relationship of natural polymers and their composites
the interaction between water and biological macromolecules
the structure of microphase separation in multiphase polymer materials
the interaction of hydrogen bonds in polymers
as well as conductive polymer materials. The latest applications and progress of solid-state NMR technology in the aforementioned fields are also introduced.
固体核磁共振高分子微观结构动力学结构与性能
Solid-state NMRPolymersMicrostructureDynamicsStructure and property
Schmidt-Rohr K, Spiess H W. Multidimensional Solid-State NMR and Polymers. London: Academic Press Ltd. , 1994. doi:10.1016/b978-0-08-092562-2.50011-4http://dx.doi.org/10.1016/b978-0-08-092562-2.50011-4
Becker J, Comotti A, Simonutti R, Sozzani P, Saalwachter K. J Phys Chem B, 2005, 109(49): 23285-23294. doi:10.1021/jp054795dhttp://dx.doi.org/10.1021/jp054795d
Liu S F, Mao J D, Schmidt-Rohr K. J Magn Reson, 2002, 155(1): 15-28. doi:10.1006/jmre.2002.2503http://dx.doi.org/10.1006/jmre.2002.2503
Saalwaechter K, Lange F, Matyjaszewski K, Huang C F, Graf R. J Magn Reson, 2011, 212(1): 204-215
Spiess H W. Macromolecules, 2017, 50: 1761-1777. doi:10.1021/acs.macromol.6b02736http://dx.doi.org/10.1021/acs.macromol.6b02736
Hansen M R, Graf R, Spiess H W. Chem Rev, 2015, 116(3): 1272-1308
Peng Y, Cai C, Zhang R, Chen T, Sun P, Wang X, Xue G, Shi A C. Chinese J Polym Sci, 2016, 34(4): 446-456. doi:10.1007/s10118-016-1762-zhttp://dx.doi.org/10.1007/s10118-016-1762-z
Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, Past J, Samoson A, Ernst M, Boeckmann A, Meier B H. Angew Chem Int Ed, 2014, 53(45): 12253-12256. doi:10.1002/anie.201405730http://dx.doi.org/10.1002/anie.201405730
Glenn D R, Bucher D B, Lee J, Lukin M D, Park H, Walsworth R L. Nature, 2018, 555(7696): 351-354. doi:10.1038/nature25781http://dx.doi.org/10.1038/nature25781
Hansen M R, Graf R, Spiess H W. Accounts Chem Res, 2013, 46(9): 1996-2007. doi:10.1021/ar300338bhttp://dx.doi.org/10.1021/ar300338b
Rossini A J, Widdifield C M, Zagdoun A, Lelli M, Schwarzwaelder M, Coperet C, Lesage A, Emsley L. J Am Chem Soc, 2014, 136(6): 2324-2334. doi:10.1021/ja4092038http://dx.doi.org/10.1021/ja4092038
Lee Y J, Murakhtina T, Sebastiani D, Spiess H W. J Am Chem Soc, 2007, 129(41): 12406-12407. doi:10.1021/ja0754857http://dx.doi.org/10.1021/ja0754857
Wang F, Zhang R, Wu Q, Chen T, Sun P, Shi A C. ACS Appl Mater Interfaces, 2014, 6(23): 21397-21407. doi:10.1021/am5064052http://dx.doi.org/10.1021/am5064052
Rawal A, Kong X, Meng Y, Otaigbe J U, Schmidt-Rohr K. Macromolecules, 2011, 44(20): 8100-8105. doi:10.1021/ma201756qhttp://dx.doi.org/10.1021/ma201756q
Yao Y F, Graf R, Spiess H W, Rastogi S. Macromolecules, 2008, 41(7): 2514-2519. doi:10.1021/ma702815khttp://dx.doi.org/10.1021/ma702815k
Tang M, Berthold D A, Rienstra C M. J Phys Chem Lett, 2011, 2(14): 1836-1841. doi:10.1021/jz200768rhttp://dx.doi.org/10.1021/jz200768r
Bejagam K K, An Y, Singh S, Deshmukh S A. J Phys Chem Lett, 2018, 9(22): 6480-6488. doi:10.1021/acs.jpclett.8b02956http://dx.doi.org/10.1021/acs.jpclett.8b02956
Yang L Y, Wei D X, Xu M, Yao Y F, Chen Q. Angew Chem Int Ed, 2014, 53(14): 3631-3635. doi:10.1002/anie.201307423http://dx.doi.org/10.1002/anie.201307423
Schledorn M, Malär A A, Torosyan A, Penzel S, Klose D, Oss A, Org M L, Wang S, Lecoq L, Cadalbert R, Samoson A, Böckmann A, Meier B H. ChemBioChem, 2020, 21(17): 2540-2548. doi:10.1002/cbic.202000341http://dx.doi.org/10.1002/cbic.202000341
Lowe I J. Phys Rev Lett, 1959, 2(7): 285-287. doi:10.1103/physrevlett.2.285http://dx.doi.org/10.1103/physrevlett.2.285
Andrew E R, Bradbury A, Eades R G. Nature, 1958, 182: 1659. doi:10.1038/1821659a0http://dx.doi.org/10.1038/1821659a0
Anderson A G, Hartmann S R. Phys Rev, 1962, 128(5): 2023-2041. doi:10.1103/physrev.128.2023http://dx.doi.org/10.1103/physrev.128.2023
He Xin(何鑫), Wang Fenfen(王粉粉), Tian Donglin(田东林), Yang Zhijun(杨志君), Li Tao(李涛), Sun Pingchuan(孙平川). Acta Polymerica Sinica(高分子学报), 2018, (7): 949-958. doi:10.11777/j.issn1000-3304.2018.18078http://dx.doi.org/10.11777/j.issn1000-3304.2018.18078
Yu S, Zhang R, Wu Q, Chen T, Sun P. Adv Mater, 2013, 25(35): 4912-4917. doi:10.1002/adma.201301513http://dx.doi.org/10.1002/adma.201301513
Ryan L M, Taylor R E, Paff A J, Gerstein B C. J Chem Phys, 1980, 72: 508. doi:10.1063/1.438935http://dx.doi.org/10.1063/1.438935
Sakellariou D, Lesage A, Hodgkinson P, Emsley L. Chem Phys Lett, 2000, 319(3-4): 253-260. doi:10.1016/s0009-2614(00)00127-5http://dx.doi.org/10.1016/s0009-2614(00)00127-5
Lesage A, Sakellariou D, Hediger S, Elena B, Charmont P, Steuernagel S, Emsley L. J Magn Reson, 2003, 163(1): 105-113. doi:10.1016/s1090-7807(03)00104-6http://dx.doi.org/10.1016/s1090-7807(03)00104-6
Salager E, Stein R S, Steuernagel S, Lesage A, Elena B, Emsley L. Chem Phys Lett, 2009, 469(4-6): 336-341. doi:10.1016/j.cplett.2008.12.073http://dx.doi.org/10.1016/j.cplett.2008.12.073
Gan Z, Madhu P K, Amoureux J, Trebosc J, Lafon O. Chem Phys Lett, 2011, 503(1-3): 167-170. doi:10.1016/j.cplett.2010.12.070http://dx.doi.org/10.1016/j.cplett.2010.12.070
Li B, Xu L, Wu Q, Chen T, Sun P, Jin Q, Ding D, Wang X, Xue G, Shi A C. Macromolecules, 2007, 40: 5776-5786. doi:10.1021/ma070485chttp://dx.doi.org/10.1021/ma070485c
Tian D, Li T, Zhang R, Wu Q, Chen T, Sun P, Ramamoorthy A. J Phys Chem B, 2017, 121(25): 6108-6116. doi:10.1021/acs.jpcb.7b02838http://dx.doi.org/10.1021/acs.jpcb.7b02838
Bennett A E, Rienstra C M, Auger M, Lakshmi K V, Griffin R G. J Chem Phys, 1995, 103(16): 6951. doi:10.1063/1.470372http://dx.doi.org/10.1063/1.470372
Fung B M, Khitrin A K, Ermolaev K. J Magn Reson, 2000, 142(1): 97-101. doi:10.1006/jmre.1999.1896http://dx.doi.org/10.1006/jmre.1999.1896
Madhu P K. Isr J Chem, 2014, 54(1-2): 25-38. doi:10.1002/ijch.201300097http://dx.doi.org/10.1002/ijch.201300097
Nishiyama Y. Solid State Nucl Magn Reson, 2016, 78: 24-36. doi:10.1016/j.ssnmr.2016.06.002http://dx.doi.org/10.1016/j.ssnmr.2016.06.002
Chen Q, Hou S S, Schmidt-Rohr K. Solid State Nucl Magn Reson, 2004, 26(1): 11-15. doi:10.1016/j.ssnmr.2003.08.002http://dx.doi.org/10.1016/j.ssnmr.2003.08.002
Chung J, Kushner A M, Weisman A C, Guan Z. Nat Mater, 2014, 13(11): 1055-1062. doi:10.1038/nmat4090http://dx.doi.org/10.1038/nmat4090
Keten S, Xu Z, Ihle B, Buehler M J. Nat Mater, 2010, 9(4): 359-367. doi:10.1038/nmat2704http://dx.doi.org/10.1038/nmat2704
Ling S, Li C, Adamcik J, Shao Z, Chen X, Mezzenga R. Adv Mater, 2014, 26(26): 4569-4574. doi:10.1002/adma.201400730http://dx.doi.org/10.1002/adma.201400730
Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L. Angew Chem Int Ed, 2012, 51(9): 2076-2079. doi:10.1002/anie.201105730http://dx.doi.org/10.1002/anie.201105730
Gandini A. Macromolecules, 2008, 41(24): 9491-9504. doi:10.1021/ma801735uhttp://dx.doi.org/10.1021/ma801735u
Cheng Q F, Jiang L, Tang Z Y. Acc Chem Res, 2014, 47(4): 1256-1266. doi:10.1021/ar400279thttp://dx.doi.org/10.1021/ar400279t
Chen X, Knight D P, Shao Z Z, Vollrath F. Polymer, 2001, 42(25): 9969-9974. doi:10.1016/s0032-3861(01)00541-9http://dx.doi.org/10.1016/s0032-3861(01)00541-9
Heim M, Keerl D, Scheibel T. Angew Chem Int Ed, 2009, 48(20): 3584-3596. doi:10.1002/anie.200803341http://dx.doi.org/10.1002/anie.200803341
van Beek J D, Hess S, Vollrath F, Meier B H. Proc Natl Acad Sci USA, 2002, 99(16): 10266-10271. doi:10.1073/pnas.152162299http://dx.doi.org/10.1073/pnas.152162299
Jin H J, Kaplan D L. Nature, 2003, 424(6952): 1057-1061. doi:10.1038/nature01809http://dx.doi.org/10.1038/nature01809
Simmons A H, Michal C A, Jelinski L W. Science, 1996, 271(5245): 84-87. doi:10.1126/science.271.5245.84http://dx.doi.org/10.1126/science.271.5245.84
Simmons A, Ray E, Jelinski L W. Macromolecules, 1994, 27(18): 5235-5237. doi:10.1021/ma00096a060http://dx.doi.org/10.1021/ma00096a060
Holland G P, Jenkins J E, Creager M S, Lewis R V, Yarger J L. Chem Commun, 2008, (43): 5568-5570. doi:10.1039/b812928bhttp://dx.doi.org/10.1039/b812928b
Holland G P, Jenkins J E, Creager M S, Lewis R V, Yarger J L. Biomacromolecules, 2008, 9(2): 651-657. doi:10.1021/bm700950uhttp://dx.doi.org/10.1021/bm700950u
Jenkins J E, Creager M S, Butler E B, Lewis R V, Yarger J L, Holland G P. Chem Commun, 2008, 46(36): 6714-6716
Holland G P, Lewis R V, Yarger J L. J Am Chem Soc, 2004, 126(18): 5867-5872. doi:10.1021/ja031930whttp://dx.doi.org/10.1021/ja031930w
Yarger J L, Cherry B R, van der Vaart A. Nat Rev Mater, 2018, 3(3): 18008. doi:10.1038/natrevmats.2018.8http://dx.doi.org/10.1038/natrevmats.2018.8
Asakura T, Suzuki Y, Nakazawa Y, Yazawa K, Holland G P, Yarger J L. Prog Nucl Magn Reson Spectrosc, 2013, 69: 23-68. doi:10.1016/j.pnmrs.2012.08.001http://dx.doi.org/10.1016/j.pnmrs.2012.08.001
Asakura T, Aoki A, Komatsu K, Ito C, Suzuki I, Naito A, Kaji H. Biomacromolecules, 2020, 21(8): 3102-3111. doi:10.1021/acs.biomac.0c00486http://dx.doi.org/10.1021/acs.biomac.0c00486
Isogai A, Atalla R H. Cellulose, 1998, 5(4): 309-319
Cai J, Zhang L. Biomacromolecules, 2006, 7(1): 183-189. doi:10.1021/bm0505585http://dx.doi.org/10.1021/bm0505585
Cai J, Zhang L. Macromol Biosci, 2005, 5(6): 539-548. doi:10.1002/mabi.200400222http://dx.doi.org/10.1002/mabi.200400222
Fang Y, Duan B, Lu A, Liu M, Liu H, Xu X, Zhang L. Biomacromolecules, 2015, 16(4): 1410-1417. doi:10.1021/acs.biomac.5b00195http://dx.doi.org/10.1021/acs.biomac.5b00195
Duan B, Zheng X, Xia Z, Fan X, Guo L, Liu J, Wang Y, Ye Q, Zhang L. Angew Chem Int Ed, 2015, 54(17): 5152-5156. doi:10.1002/anie.201412129http://dx.doi.org/10.1002/anie.201412129
Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J. Phys Chem Chem Phys, 2010, 12(8): 1941-1947. doi:10.1039/b920446fhttp://dx.doi.org/10.1039/b920446f
Remsing R C, Swatloski R P, Rogers R D, Moyna G. Chem Commun, 2006, (12): 1271-1273. doi:10.1039/b600586chttp://dx.doi.org/10.1039/b600586c
Moulthrop J S, Swatloski R P, Moyna G, Rogers R D. Chem Commun, 2005, (12): 1557-1559. doi:10.1039/b417745bhttp://dx.doi.org/10.1039/b417745b
Cho G, Wu Y, Ackerman J L. Science, 2003, 300(5622): 1123-1127. doi:10.1126/science.1078470http://dx.doi.org/10.1126/science.1078470
Wu Y, Ackerman J L, Strawich E S, Rey C, Kim H M, Glimcher M J. Calcif Tissue Int, 2003, 72(5): 610-626. doi:10.1007/s00223-002-1068-8http://dx.doi.org/10.1007/s00223-002-1068-8
Tian D, Wang F, Yang Z, Niu X, Wu Q, Sun P. Carbohyd Polym, 2019, 219: 191-200. doi:10.1016/j.carbpol.2019.05.029http://dx.doi.org/10.1016/j.carbpol.2019.05.029
White P B, Wang T, Park Y B, Cosgrove D J, Hong M. J Am Chem Soc, 2014, 136(29): 10399-10409. doi:10.1021/ja504108hhttp://dx.doi.org/10.1021/ja504108h
Fortier-McGill B, Toader V, Reven L. Macromolecules, 2011, 44(8): 2755-2765. doi:10.1021/ma102907whttp://dx.doi.org/10.1021/ma102907w
Michaelis V K, Keeler E G, Ong T C, Craigen K N, Penzel S, Wren J E C, Kroeker S, Griffin R G. J Phys Chem B, 2015, 119(25): 8024-8036. doi:10.1021/acs.jpcb.5b04647http://dx.doi.org/10.1021/acs.jpcb.5b04647
Zhang L, Liu Z, Chen Q, Hansen E W. Macromolecules, 2007, 40(15): 5411-5419. doi:10.1021/ma0707786http://dx.doi.org/10.1021/ma0707786
Lee D, Takahashi H, Thankamony A S, Dacquin J P, Bardet M, Lafon O, Paepe G D. J Am Chem Soc, 2012, 134(45): 18491-4. doi:10.1021/ja307755thttp://dx.doi.org/10.1021/ja307755t
Lusceac S A, Vogel M R, Herbers C R. BBA-Proteins Proteomics, 2010, 1804(1): 41-48. doi:10.1016/j.bbapap.2009.06.009http://dx.doi.org/10.1016/j.bbapap.2009.06.009
Kitchin S J, Halstead T K. Solid State Nucl Magn Reson, 1996, 7(1): 27-44. doi:10.1016/0926-2040(96)01235-0http://dx.doi.org/10.1016/0926-2040(96)01235-0
Schartel B, Wendling J, Wendorff J H. Macromolecules, 1996, 29(5): 1521-1527. doi:10.1021/ma950637ghttp://dx.doi.org/10.1021/ma950637g
Fei Z, Zhao D, Geldbach T J, Scopelliti R, Dyson P J, Antonijevic S, Bodenhausen G. Angew Chem Int Ed, 2005, 117(35): 5866-5871. doi:10.1002/ange.200500207http://dx.doi.org/10.1002/ange.200500207
Vogel A, Katzka C P, Waldmann H, Arnold K, Brown M F, Huster D. J Am Chem Soc, 2005, 127(35): 12263-12272. doi:10.1021/ja051856chttp://dx.doi.org/10.1021/ja051856c
Yang Z, Liivak O, Seidel A, LaVerde G, Zax D B, Jelinski L W. J Am Chem Soc, 2000, 122(37): 9019-9025. doi:10.1021/ja0017099http://dx.doi.org/10.1021/ja0017099
Creager M S, Jenkins J E, Thagard-Yeaman L A, Brooks A E, Jones J A, Lewis R V, Holland G P, Yarger J L. Biomacromolecules, 2010, 11(8): 2039-2043. doi:10.1021/bm100399xhttp://dx.doi.org/10.1021/bm100399x
Singh H, Vasa S K, Jangra H, Rovó P, Päslack C, Das C K, Zipse H, Schäfer L V, Linser R. J Am Chem Soc, 2019, 141(49): 19276-19288. doi:10.1021/jacs.9b05311http://dx.doi.org/10.1021/jacs.9b05311
Zhang Rongchun(张荣纯). Acta Polymerica Sinica(高分子学报), 2019, 51(2): 136-147
Pan P, Yang J, Shan G, Bao Y, Weng Z, Cao A, Yazawa K, Inoue Y. Macromolecules, 2012, 45(1): 189-197. doi:10.1021/ma201906ahttp://dx.doi.org/10.1021/ma201906a
Asano A, Eguchi M, Shimizu M, Kurotsu T. Macromolecules, 2002, 35(23): 8819-8824. doi:10.1021/ma020867chttp://dx.doi.org/10.1021/ma020867c
Duan P, Lamm M S, Yang F, Xu W, Skomski D, Su Y, Schmidt-Rohr K. Mol Pharm, 2020, 17(9): 3567-3580. doi:10.1021/acs.molpharmaceut.0c00592http://dx.doi.org/10.1021/acs.molpharmaceut.0c00592
He X, Liu Y, Zhang R, Wu Q, Chen T, Sun P, Wang X, Xue G. J Phys Chem C, 2014, 118(24): 13285-13299. doi:10.1021/jp5036772http://dx.doi.org/10.1021/jp5036772
Sun P C, Dang Q Q, Li B H, Chen T H, Wang Y N, Lin H, Jin Q H, Ding D T, Shi A C. Macromolecules, 2005, 38(13): 5654-5667. doi:10.1021/ma0505979http://dx.doi.org/10.1021/ma0505979
0
Views
597
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution