浏览全部资源
扫码关注微信
郑州大学材料科学与工程学院 郑州 450001
Published:20 October 2021,
Published Online:25 March 2021,
Received:28 November 2020,
Revised:16 December 2020,
扫 描 看 全 文
王冰花,陈金龙,张彬.原子力显微镜在高分子表征中的应用[J].高分子学报,2021,52(10):1406-1420.
Wang Bing-hua,Chen Jin-long,Zhang Bin.Application of Atomic Force Microscopy in Polymer Characterization[J].ACTA POLYMERICA SINICA,2021,52(10):1406-1420.
王冰花,陈金龙,张彬.原子力显微镜在高分子表征中的应用[J].高分子学报,2021,52(10):1406-1420. DOI: 10.11777/j.issn1000-3304.2020.20259.
Wang Bing-hua,Chen Jin-long,Zhang Bin.Application of Atomic Force Microscopy in Polymer Characterization[J].ACTA POLYMERICA SINICA,2021,52(10):1406-1420. DOI: 10.11777/j.issn1000-3304.2020.20259.
原子力显微镜(AFM)是一种在纳米尺度表征材料表面形貌结构、性能和演变的有效工具,在高分子科学领域具有广泛应用. AFM不仅可以表征高分子从单分子链到聚集态结构的形貌与性能,也能够原位研究外场作用下高分子结晶与熔融、嵌段高分子自组装和共混高分子相分离等过程,进一步采用基于扫描探针刻蚀技术的机械刻蚀、电致刻蚀和热致刻蚀等还可以构筑高分子功能化微图案. 这里首先简述AFM的工作原理及常用成像模式,进一步介绍AFM在高分子表征中的样品制备、扫描参数优化和图像数据处理的一些要点. 最后结合国内外相关研究进展,简单综述了AFM在高分子聚集态结构形貌与相转变表征、高分子纳米尺度性能表征和高分子纳米加工3个方面的典型应用.
Atomic force microscopy (AFM) is a powerful tool for characterizing the nanoscale surface topography
structures
properties and dynamic process of materials
which has been widely used in polymer science. With the advances of multiparametric and multifunctional characterization
AFM not only can probe the surface topography and physicochemical properties of polymers from the structure of individual molecules to aggregation structures
but also enables the
in situ
study of crystallization and melting of polymers
self-assembly of block copolymers and phase separation of blend polymers by real-time imaging. Furthermore
the scanning probe lithography (SPL) (
e.g
. mechanical-SPL
bias induced SPL
thermal-SPL) provides an attractive nanofabrication method on polymer surface and demonstrates potential applications. Here
we present a survey on the working principle and classic imaging modes of AFM
with an emphasis on the preparation of polymer samples
the optimization of scan parameters
image processing and data analysis. And we summarize recent research progress on the applications of AFM in polymer science
mainly focusing on imaging the surface topography
quantitatively mapping the physicochemical properties
the dynamic evolution of phase transition
and nanofabrication method based on SPL. We hope this review would be conducive to understanding the AFM techniques and promote further applications of AFM in polymer characterization.
原子力显微镜高分子表征聚集态结构微观性能扫描探针刻蚀加工
Atomic force microscopyPolymer characterizationAggregation structureNanoscale properties of polymerScanning probe lithography
Shen J, Zhou Y, Lu Y, Wang B, Shen C, Chen J, Zhang B. Macromolecules, 2020, 53(6): 2136-2144. doi:10.1021/acs.macromol.9b01880http://dx.doi.org/10.1021/acs.macromol.9b01880
Wang B, He K, Lu Y, Zhou Y, Chen J, Shen C, Chen J, Men Y, Zhang B. Macromolecules, 2020, 53(15): 6476-6485. doi:10.1021/acs.macromol.0c00885http://dx.doi.org/10.1021/acs.macromol.0c00885
Zhang Bin(张彬). Acta Polymerica Sinica(高分子学报), 2020, 51(3): 221-238
Binnig G, Quate C F, Gerber C. Phys Rev Lett, 1986, 56(9): 930-933. doi:10.1103/physrevlett.56.930http://dx.doi.org/10.1103/physrevlett.56.930
Binnig G, Rohrer H, Gerber C, Weibel E. Phys Rev Lett, 1982, 49(1): 57-61. doi:10.1103/physrevlett.49.57http://dx.doi.org/10.1103/physrevlett.49.57
Gerber C, Lang H P. Nat Nanotechnol, 2006, 1(1): 3-5. doi:10.1038/nnano.2006.70http://dx.doi.org/10.1038/nnano.2006.70
Schulte M F, Scotti A, Gelissen A P H, Richtering W, Mourran A. Langmuir, 2018, 34(14): 4150-4158. doi:10.1021/acs.langmuir.7b03811http://dx.doi.org/10.1021/acs.langmuir.7b03811
Wade L A, Shapiro I R, Ma Z, Quake S R, Collier C P. Nano Lett, 2004, 4(4): 725-731. doi:10.1021/nl049976qhttp://dx.doi.org/10.1021/nl049976q
Lindvall N, Kalabukhov A, Yurgens A. J Appl Phys, 2012, 111(6): 064904. doi:10.1063/1.3695451http://dx.doi.org/10.1063/1.3695451
Choi W, Shehzad M A, Park S, Seo Y. RSC Adv, 2017, 7(12): 6943-6949. doi:10.1039/c6ra27436fhttp://dx.doi.org/10.1039/c6ra27436f
Kumaki J. Polym J, 2016, 48(1): 3-14. doi:10.1038/pj.2015.67http://dx.doi.org/10.1038/pj.2015.67
Dufrêne Y F, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller D J. Nat Nanotechnol, 2017, 12(4): 295-307. doi:10.1038/nnano.2017.45http://dx.doi.org/10.1038/nnano.2017.45
Giessibl F J, Bielefeldt H, Hembacher S, Mannhart J. Appl Surf Sci, 1999, 140(3): 352-357. doi:10.1016/s0169-4332(98)00553-4http://dx.doi.org/10.1016/s0169-4332(98)00553-4
Yang C W, Hwang I S, Chen Y F, Chang C S, Tsai D P. Nanotechnology, 2007, 18(8): 084009. doi:10.1088/0957-4484/18/8/084009http://dx.doi.org/10.1088/0957-4484/18/8/084009
Neuman K C, Nagy A. Nat Methods, 2008, 5(6): 491-505. doi:10.1038/nmeth.1218http://dx.doi.org/10.1038/nmeth.1218
Li X, Han Y, An L. Langmuir, 2002, 18(13): 5293-5298. doi:10.1021/la011728bhttp://dx.doi.org/10.1021/la011728b
Zhang H, Wang B, Wang G, Shen C, Chen J, Reiter G, Zhang B. Macromolecules, 2020, 53(21): 9631-9640. doi:10.1021/acs.macromol.0c01233http://dx.doi.org/10.1021/acs.macromol.0c01233
Katzenmeyer A M, Aksyuk V, Centrone A. Anal Chem, 2013, 85(4): 1972-1979. doi:10.1021/ac303620yhttp://dx.doi.org/10.1021/ac303620y
Stocker W, Magonov S N, Cantow H J, Wittmann J C, Lotz B. Macromolecules, 1993, 26(22): 5915-5923. doi:10.1021/ma00074a013http://dx.doi.org/10.1021/ma00074a013
Stocker W, Schumacher M, Graff S, Lang J, Wittmann J C, Lovinger A J, Lotz B. Macromolecules, 1994, 27(23): 6948-6955. doi:10.1021/ma00101a036http://dx.doi.org/10.1021/ma00101a036
Sarrazin B, Tsapis N, Mousnier L, Taulier N, Urbach W, Guenoun P. Langmuir, 2016, 32(18): 4610-4618. doi:10.1021/acs.langmuir.6b00431http://dx.doi.org/10.1021/acs.langmuir.6b00431
Beena Unni A, Chat K, Duarte D M, Wojtyniak M, Geppert-Rybczyńska M, Kubacki J, Wrzalik R, Richert R, Adrjanowicz K. Polymer, 2020, 199: 122501. doi:10.1016/j.polymer.2020.122501http://dx.doi.org/10.1016/j.polymer.2020.122501
Hu Wenbing(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Industry Press(化学工业出版社). 2013. doi:10.1007/978-3-7091-0670-9_10http://dx.doi.org/10.1007/978-3-7091-0670-9_10
Qiao Congde(乔从德), Jiang Shichun(蒋世春), Ji Xiangling(姬相玲), An Lijia(安立佳), Jiang Bingzheng(姜炳政). Acta Polymerica Sinica(高分子学报), 2006, (8): 964-969
Kong Xiangming(孔祥明), He Shugang(何书刚), Wang Zhen(王震), Chen Zhou(陈宙), Xie Xuming(谢续明). Acta Polymerica Sinica(高分子学报), 2003, (4): 571-576
Lorenzo A T, Arnal M L, Sánchez J J, Müller A J. J Polym Sci, Part B: Polym Phys, 2006, 44(12): 1738-1750. doi:10.1002/polb.20832http://dx.doi.org/10.1002/polb.20832
Hu W, Cai T, Ma Y, Hobbs J K, Farrance O, Reiter G. Faraday Discuss, 2009, 143: 129-141. doi:10.1039/b901378dhttp://dx.doi.org/10.1039/b901378d
Michell R M, Mugica A, Zubitur M, Müller A J. Self-nucleation of crystalline phases within homopolymers, polymer blends, copolymers, and nanocomposites. In: Auriemma F, Alfonso G C, de Rosa C, ed. Polymer Crystallization I: From Chain Microstructure to Processing. Cham: Springer International Publishing, 2017. 215-256. doi:10.1007/978-3-319-49203-2http://dx.doi.org/10.1007/978-3-319-49203-2
Xu J, Ma Y, Hu W, Rehahn M, Reiter G. Nat Mater, 2009, 8(4): 348-353. doi:10.1038/nmat2405http://dx.doi.org/10.1038/nmat2405
Wang B, Tang S, Wang Y, Shen C, Reiter R, Reiter G, Chen J, Zhang B. Macromolecules, 2018, 51(5): 1626-1635. doi:10.1021/acs.macromol.7b02445http://dx.doi.org/10.1021/acs.macromol.7b02445
Zhang G, Zhai X, Ma Z, Jin L, Zheng P, Wang W, Cheng S Z D, Lotz B. ACS Macro Lett, 2012, 1(1): 217-221. doi:10.1021/mz2001109http://dx.doi.org/10.1021/mz2001109
Zhang G, Jin L, Zheng P, Shi A C, Wang W. Polymer, 2010, 51(2): 554-562. doi:10.1016/j.polymer.2009.11.061http://dx.doi.org/10.1016/j.polymer.2009.11.061
Jin L, Zhang G, Zhai X, Ma Z, Zheng P, Wang W. Polymer, 2009, 50(25): 6157-6165. doi:10.1016/j.polymer.2009.10.041http://dx.doi.org/10.1016/j.polymer.2009.10.041
Zhang G, Cao Y, Jin L, Zheng P, van Horn R M, Lotz B, Cheng S Z D, Wang W. Polymer, 2011, 52(4): 1133-1140. doi:10.1016/j.polymer.2011.01.002http://dx.doi.org/10.1016/j.polymer.2011.01.002
Chen E Q, Jing A J, Weng X, Huang P, Lee S W, Cheng S Z D, Hsiao B S, Yeh F. Polymer, 2003, 44(19): 6051-6058. doi:10.1016/s0032-3861(03)00557-3http://dx.doi.org/10.1016/s0032-3861(03)00557-3
Zhu D S, Liu Y X, Chen E Q, Li M, Chen C, Sun Y H, Shi A C, van Horn R M, Cheng S Z. Macromolecules, 2007, 40(5): 1570-1578. doi:10.1021/ma062542shttp://dx.doi.org/10.1021/ma062542s
Huang Y, Liu X B, Zhang H L, Zhu D S, Sun Y J, Yan S K, Wang J, Chen X F, Wan X H, Chen E Q, Zhou Q F. Polymer, 2006, 47(4): 1217-1225. doi:10.1016/j.polymer.2005.12.021http://dx.doi.org/10.1016/j.polymer.2005.12.021
Zhu D S, Liu Y X, Shi A C, Chen E Q. Polymer, 2006, 47(15): 5239-5242. doi:10.1016/j.polymer.2006.05.013http://dx.doi.org/10.1016/j.polymer.2006.05.013
Luo S, Kui X, Xing E, Wang X, Xue G, Schick C, Hu W, Zhuravlev E, Zhou D. Macromolecules, 2018, 51(14): 5209-5218. doi:10.1021/acs.macromol.8b00692http://dx.doi.org/10.1021/acs.macromol.8b00692
Schönherr H, Frank C W. Macromolecules, 2003, 36(4): 1199-1208. doi:10.1021/ma020686ahttp://dx.doi.org/10.1021/ma020686a
Franke M, Rehse N. Macromolecules, 2008, 41(1): 163-166. doi:10.1021/ma0718649http://dx.doi.org/10.1021/ma0718649
Kikkawa Y, Abe H, Iwata T, Inoue Y, Doi Y. Biomacromolecules, 2001, 2(3): 940-945. doi:10.1021/bm015539jhttp://dx.doi.org/10.1021/bm015539j
Ren Yijin(任伊锦), Ma Yu(马禹), Zhang Xiaohong(章晓红), Hu Wenbing(胡文兵). Polymer Bulletin(高分子通报), 2010, (11): 28-37
Lei Y G, Chan C M, Li J X, Ng K M, Wang Y, Jiang Y, Li L. Macromolecules, 2002, 35(18): 6751-6753. doi:10.1021/ma0121619http://dx.doi.org/10.1021/ma0121619
Chan C M, Li L. Direct observation of the growth of lamellae and spherulites by AFM. In: Kausch H H, ed. Intrinsic Molecular Mobility and Toughness of Polymers II Berlin. Heidelberg: Springer Berlin Heidelberg, 2005. 1-41. doi:10.1007/b136971http://dx.doi.org/10.1007/b136971
Yang J P, Liao Q, Zhou J J, Jiang X, Wang X H, Zhang Y, Jiang S D, Yan S K, Li L. Macromolecules, 2011, 44(9): 3511-3516. doi:10.1021/ma102973whttp://dx.doi.org/10.1021/ma102973w
Kikkawa Y, Abe H, Fujita M, Iwata T, Inoue Y, Doi Y. Macromol Chem Phys, 2003, 204(15): 1822-1831. doi:10.1002/macp.200350044http://dx.doi.org/10.1002/macp.200350044
Zhang B, Wang B H, Chen J J, Shen C Y, Reiter R, Chen J B, Reiter G. Macromolecules, 2016, 49(14): 5145-5151. doi:10.1021/acs.macromol.6b01123http://dx.doi.org/10.1021/acs.macromol.6b01123
Zhang B, Chen J J, Liu B C, Wang B H, Shen C Y, Reiter R, Chen J B, Reiter G. Macromolecules, 2017, 50(16): 6210-6217. doi:10.1021/acs.macromol.7b01381http://dx.doi.org/10.1021/acs.macromol.7b01381
Li L, Hu J, Li Y, Huang Q, Sun X, Yan S. Macromolecules, 2020, 53(5): 1745-1751. doi:10.1021/acs.macromol.9b02598http://dx.doi.org/10.1021/acs.macromol.9b02598
Guo Z, Xin R, Hu J, Li Y, Sun X, Yan S. Macromolecules, 2019, 52(24): 9657-9664. doi:10.1021/acs.macromol.9b02023http://dx.doi.org/10.1021/acs.macromol.9b02023
Li L, Xin R, Li H, Sun X, Ren Z, Huang Q, Yan S. Macromolecules, 2020, 53(19): 8487-8493. doi:10.1021/acs.macromol.0c01456http://dx.doi.org/10.1021/acs.macromol.0c01456
Li Y, Guo Z, Xue M, Yan S. Macromolecules, 2019, 52(11): 4232-4239. doi:10.1021/acs.macromol.9b00627http://dx.doi.org/10.1021/acs.macromol.9b00627
Sun Y, Li H, Huang Y, Chen E, Gan Z, Yan S. Polymer, 2006, 47(7): 2455-2459. doi:10.1016/j.polymer.2006.02.002http://dx.doi.org/10.1016/j.polymer.2006.02.002
Xin R, Guo Z, Li Y, Sun X, Xue M, Zhang J, Yan S. Macromolecules, 2019, 52(19): 7175-7182. doi:10.1021/acs.macromol.9b01574http://dx.doi.org/10.1021/acs.macromol.9b01574
Xin R, Wang S, Guo Z, Li Y, Hu J, Sun X, Xue M, Zhang J, Yan S. Macromolecules, 2020, 53(8): 3090-3096. doi:10.1021/acs.macromol.0c00414http://dx.doi.org/10.1021/acs.macromol.0c00414
Ge Huan(戈欢), Zhang Fajun(张发军), Huang Haiying(黄海瑛), He Tianbai(何天白). Acta Polymerica Sinica(高分子学报), 2019, 50(1): 82-90
Jiang Y, Jin X G, Han C C, Li L, Wang Y, Chan C M. Langmuir, 2003, 19(19): 8010-8018. doi:10.1021/la0343775http://dx.doi.org/10.1021/la0343775
Zhou W, Weng X, Jin S, Rastogi S, Lovinger A J, Lotz B, Cheng S Z D. Macromolecules, 2003, 36(25): 9485-9491. doi:10.1021/ma030312xhttp://dx.doi.org/10.1021/ma030312x
Zhang B, Chen J, Baier M C, Mecking S, Reiter R, Mülhaupt R, Reiter G. Macromol Rapid Commun, 2015, 36(2): 181-189. doi:10.1002/marc.201570008http://dx.doi.org/10.1002/marc.201570008
Dunshen Z, Xingxian S, Yixin L, Erqiang C, Cheng S Z. Front Chem China, 2006, 2(2): 174-177. doi:10.1007/s11458-007-0035-3http://dx.doi.org/10.1007/s11458-007-0035-3
Zhang B, Chen J, Freyberg P, Reiter R, Mülhaupt R, Xu J, Reiter G. Macromolecules, 2015, 48(5): 1518-1523. doi:10.1021/ma502345phttp://dx.doi.org/10.1021/ma502345p
Chai L, Liu X, Sun X, Li L, Yan S. Polym Chem, 2016, 7(10): 1892-1898. doi:10.1039/c5py02037ahttp://dx.doi.org/10.1039/c5py02037a
Wang Xi(王曦), Liu Pengsheng(刘朋生), Jiang Yong(姜勇), Luo Yanhong(罗艳红), Gao Xia(高峡), Li Lin(李林). Acta Polymerica Sinica(高分子学报), 2003, (5): 761-764
Grozev N, Botiz I, Reiter G. Eur Phys J E, 2008, 27(1): 63-71. doi:10.1140/epje/i2008-10352-1http://dx.doi.org/10.1140/epje/i2008-10352-1
Liu X, Wei Q S, Chai L G, Zhou J J, Huo H, Yan D D, Yan S K, Xu J, Li L. Chinese J Polym Sci, 2017, 35(1): 78-86. doi:10.1007/s10118-017-1872-2http://dx.doi.org/10.1007/s10118-017-1872-2
Lei Y G, Chan C M, Wang Y, Ng K M, Jiang Y, Lin L. Polymer, 2003, 44(16): 4673-4679. doi:10.1016/s0032-3861(03)00440-3http://dx.doi.org/10.1016/s0032-3861(03)00440-3
Li L, Chan C M, Yeung K L, Li J X, Ng K M, Lei Y. Macromolecules, 2001, 34(2): 316-325. doi:10.1021/ma000273ehttp://dx.doi.org/10.1021/ma000273e
Henry C K, Sandoz Rosado E, Roenbeck M R, Magagnosc D J, Palmese G R, Strawhecker K E, Alvarez N J. Polymer, 2020, 202:122589. doi:10.1016/j.polymer.2020.122589http://dx.doi.org/10.1016/j.polymer.2020.122589
Hobbs J K, Humphris A D L, Miles M J. Macromolecules, 2001, 34(16): 5508-5519. doi:10.1021/ma0104478http://dx.doi.org/10.1021/ma0104478
Korolkov V V, Summerfield A, Murphy A, Amabilino D B, Watanabe K, Taniguchi T, Beton P H. Nat Commun, 2019, 10(1): 1537. doi:10.1038/s41467-019-09571-6http://dx.doi.org/10.1038/s41467-019-09571-6
Ebeling D, Šekutor M, Stiefermann M, Tschakert J, Dahl J E P, Carlson R M K, Schirmeisen A, Schreiner P R. ACS Nano, 2017, 11(9): 9459-9466. doi:10.1021/acsnano.7b05204http://dx.doi.org/10.1021/acsnano.7b05204
Fukuma T, Higgins M J, Jarvis S P. Phys Rev Lett, 2007, 98(10): 106101. doi:10.1103/physrevlett.98.106101http://dx.doi.org/10.1103/physrevlett.98.106101
Hoogenboom B W, Hug H J, Pellmont Y, Martin S, Frederix P L T M, Fotiadis D, Engel A. Appl Phys Lett, 2006, 88(19): 193109. doi:10.1063/1.2202638http://dx.doi.org/10.1063/1.2202638
Ono Y, Kumaki J. Macromolecules, 2018, 51(19): 7629-7636. doi:10.1021/acs.macromol.8b01428http://dx.doi.org/10.1021/acs.macromol.8b01428
Mullin N, Hobbs J K. Phys Rev Lett, 2011, 107(19): 197801. doi:10.1103/physrevlett.107.197801http://dx.doi.org/10.1103/physrevlett.107.197801
Kocun M, Labuda A, Meinhold W, Revenko I, Proksch R. ACS Nano, 2017, 11(10): 10097-10105. doi:10.1021/acsnano.7b04530http://dx.doi.org/10.1021/acsnano.7b04530
Anzai T, Kawauchi M, Kawauchi T, Kumaki J. J Phys Chem B, 2015, 119(1): 338-347. doi:10.1021/jp5090923http://dx.doi.org/10.1021/jp5090923
Kajitani T, Okoshi K, Sakurai S I, Kumaki J, Yashima E. J Am Chem Soc, 2006, 128(3): 708-709. doi:10.1021/ja0576536http://dx.doi.org/10.1021/ja0576536
Kumaki J, Sakurai S I, Yashima E. Chem Soc Rev, 2009, 38(3): 737-746. doi:10.1039/b718433fhttp://dx.doi.org/10.1039/b718433f
Kumaki J, Kawauchi T, Yashima E. J Am Chem Soc, 2005, 127(16): 5788-5789. doi:10.1021/ja050457ehttp://dx.doi.org/10.1021/ja050457e
Savage R C, Mullin N, Hobbs J K. Macromolecules, 2015, 48(17): 6160-6165. doi:10.1021/ma5025736http://dx.doi.org/10.1021/ma5025736
Kumaki J, Kawauchi T, Yashima E. Macromolecules, 2006, 39(3): 1209-1215. doi:10.1021/ma051933ohttp://dx.doi.org/10.1021/ma051933o
Bates F S, Fredrickson G H. Phys Today, 1999, 52(2): 32-38. doi:10.1063/1.882522http://dx.doi.org/10.1063/1.882522
Darling S B. Prog Polym Sci, 2007, 32(10): 1152-1204. doi:10.1016/j.progpolymsci.2007.05.004http://dx.doi.org/10.1016/j.progpolymsci.2007.05.004
Yufa N A, Li J, Sibener S J. Macromolecules, 2009, 42(7): 2667-2671. doi:10.1021/ma802751chttp://dx.doi.org/10.1021/ma802751c
Hammond M R, Cochran E, Fredrickson G H, Kramer E J. Macromolecules, 2005, 38(15): 6575-6585. doi:10.1021/ma050479lhttp://dx.doi.org/10.1021/ma050479l
Li W, Nealey P F, de Pablo J J, Müller M. Phys Rev Lett, 2014, 113(16): 168301. doi:10.1103/physrevlett.113.168301http://dx.doi.org/10.1103/physrevlett.113.168301
Welander A M, Kang H, Stuen K O, Solak H H, Müller M, de Pablo J J, Nealey P F. Macromolecules, 2008, 41(8): 2759-2761. doi:10.1021/ma800056shttp://dx.doi.org/10.1021/ma800056s
Jung H, Woo S, Choe Y, Ryu D Y, Huh J, Bang J. ACS Macro Lett, 2015, 4(6): 656-660. doi:10.1021/acsmacrolett.5b00214http://dx.doi.org/10.1021/acsmacrolett.5b00214
Hahm J, Lopes W A, Jaeger H M, Sibener S J. J Chem Phys, 1998, 109(23): 10111-10114. doi:10.1063/1.477702http://dx.doi.org/10.1063/1.477702
Tsarkova L, Horvat A, Krausch G, Zvelindovsky A V, Sevink G J A, Magerle R. Langmuir, 2006, 22(19): 8089-8095. doi:10.1021/la0613530http://dx.doi.org/10.1021/la0613530
Tong Q, Sibener S J. Macromolecules, 2013, 46(21): 8538-8544. doi:10.1021/ma401629shttp://dx.doi.org/10.1021/ma401629s
Xuan Y, Peng J, Cui L, Wang H, Li B, Han Y. Macromolecules, 2004, 37(19): 7301-7307. doi:10.1021/ma0497761http://dx.doi.org/10.1021/ma0497761
Liao Y, Su Z, Ye X, Li Y, You J, Shi T, An L. Macromolecules, 2005, 38(2): 211-215. doi:10.1021/ma0487305http://dx.doi.org/10.1021/ma0487305
You J, Liao Y, Men Y, Shi T, An L, Li X. Macromolecules, 2011, 44(13): 5318-5325. doi:10.1021/ma200082mhttp://dx.doi.org/10.1021/ma200082m
Xu L, Yu X, Shi T, An L. Macromolecules, 2008, 41(1): 21-24. doi:10.1021/ma702124chttp://dx.doi.org/10.1021/ma702124c
Ling M M, Bao Z. Chem Mater, 2004, 16(23): 4824-4840. doi:10.1021/cm0496117http://dx.doi.org/10.1021/cm0496117
Liang W, Shi H, Yang X, Wang J, Yang W, Zhang H, Liu L. Soft Matter, 2020, 16, 8962-8984. doi:10.1039/d0sm01106ahttp://dx.doi.org/10.1039/d0sm01106a
Maugis D. J Colloid Interface Sci, 1992, 150(1): 243-269. doi:10.1016/0021-9797(92)90285-thttp://dx.doi.org/10.1016/0021-9797(92)90285-t
Garcia R. Chem Soc Rev, 2020, 49(16): 5850-5884. doi:10.1039/d0cs00318bhttp://dx.doi.org/10.1039/d0cs00318b
Ganser C, Czibula C, Tscharnuter D, Schöberl T, Teichert C, Hirn U. Soft Matter, 2018, 14(1): 140-150. doi:10.1039/c7sm02057khttp://dx.doi.org/10.1039/c7sm02057k
Wang D, Fujinami S, Nakajima K, Nishi T. Macromolecules, 2010, 43(7): 3169-3172. doi:10.1021/ma9028695http://dx.doi.org/10.1021/ma9028695
Wang S, Wang X, Zhao B, Wang L, Qiu J, Zhou L, Dong Y, Li B, Lü J, Wang Y, Zhang Y, Zhang L, Hu J. Langmuir, 2016, 32(43): 11230-11235. doi:10.1021/acs.langmuir.6b01664http://dx.doi.org/10.1021/acs.langmuir.6b01664
Liamas E, Connell S D, Ramakrishna S N, Sarkar A. Nanoscale, 2020, 12(4): 2292-2308. doi:10.1039/c9nr07084bhttp://dx.doi.org/10.1039/c9nr07084b
Killgore J P, Yablon D G, Tsou A H, Gannepalli A, Yuya P A, Turner J A, Proksch R, Hurley D C. Langmuir, 2011, 27(23): 13983-13987. doi:10.1021/la203434whttp://dx.doi.org/10.1021/la203434w
Reynaud C, Sommer F, Quet C, El Bounia N, Duc T M. Surf Interface Anal, 2000, 30(1): 185-189. doi:10.1002/1096-9918(200008)30:1<185::aid-sia862>3.0.co;2-dhttp://dx.doi.org/10.1002/1096-9918(200008)30:1<185::aid-sia862>3.0.co;2-d
Braunsmann C, Schäffer T E. Rev Sci Instrum, 2014, 85(5): 056104. doi:10.1063/1.4876485http://dx.doi.org/10.1063/1.4876485
Mailhot B, Bussière P O, Rivaton A, Morlat Thérias S, Gardette J L. Macromol Rapid Commun, 2004, 25(2): 436-440. doi:10.1002/marc.200300110http://dx.doi.org/10.1002/marc.200300110
Cappella B, Sturm H. J Appl Phys, 2001, 91(1): 506-512. doi:10.1063/1.1421632http://dx.doi.org/10.1063/1.1421632
Cappella B, Sturm H, Schulz E. J Adhes Sci Technol, 2002, 16(7): 921-933. doi:10.1163/156856102760136472http://dx.doi.org/10.1163/156856102760136472
Schönherr H, Hruska Z, Vancso G J. Macromolecules, 2000, 33(12): 4532-4537. doi:10.1021/ma991360dhttp://dx.doi.org/10.1021/ma991360d
Dietz C, Zerson M, Riesch C, Franke M, Magerle R. Macromolecules, 2008, 41(23): 9259-9266. doi:10.1021/ma801236phttp://dx.doi.org/10.1021/ma801236p
Bar G, Ganter M, Brandsch R, Delineau L, Whangbo M H. Langmuir, 2000, 16(13): 5702-5711. doi:10.1021/la9913699http://dx.doi.org/10.1021/la9913699
Santos S, Amadei C A, Verdaguer A, Chiesa M. J Phys Chem C, 2013, 117(20): 10615-10622. doi:10.1021/jp4039732http://dx.doi.org/10.1021/jp4039732
Nguyen H K, Fujinami S, Nakajima K. Polymer, 2016, 105: 64-71. doi:10.1016/j.polymer.2016.10.012http://dx.doi.org/10.1016/j.polymer.2016.10.012
Niu Y F, Yang Y, Gao S, Yao J W. Polym Test, 2016, 55: 257-260. doi:10.1016/j.polymertesting.2016.09.008http://dx.doi.org/10.1016/j.polymertesting.2016.09.008
Cappella B, Kaliappan S K. Macromolecules, 2006, 39(26): 9243-9252. doi:10.1021/ma061896ghttp://dx.doi.org/10.1021/ma061896g
Wang D, Nakajima K, Liu F, Shi S, Russell T P. ACS Nano, 2017, 11(9): 8660-8667. doi:10.1021/acsnano.6b08456http://dx.doi.org/10.1021/acsnano.6b08456
Wang D, Liang X, Russell T P, Nakajima K. Macromolecules, 2014, 47(11): 3761-3765. doi:10.1021/ma500099bhttp://dx.doi.org/10.1021/ma500099b
Yang Y, Xiao X, Peng Y, Yang C, Wu S, Liu Y, Yue T, Pu H, Liu N, Jiang H. Microsc Res Tech, 2019, 82(11): 1843-1851
Passeri D, Marinello F. Acoustic scanning probe microscopy: an overview. In: Marinello F, Passeri D, Savio E, eds. Acoustic Scanning Probe Microscopy Berlin. Heidelberg: Springer Berlin Heidelberg, 2013. 1-20. doi:10.1007/978-3-642-27494-7_1http://dx.doi.org/10.1007/978-3-642-27494-7_1
Yablon D G, Gannepalli A, Proksch R, Killgore J, Hurley D C, Grabowski J, Tsou A H. Macromolecules, 2012, 45(10): 4363-4370. doi:10.1021/ma2028038http://dx.doi.org/10.1021/ma2028038
Kolluru P V, Eaton M D, Collinson D W, Cheng X, Delgado D E, Shull K R, Brinson L C. Macromolecules, 2018, 51(21): 8964-8978. doi:10.1021/acs.macromol.8b01426http://dx.doi.org/10.1021/acs.macromol.8b01426
Aljarrah M F, Masad E. Mater Struct, 2020, 53(4): 110. doi:10.1617/s11527-020-01543-3http://dx.doi.org/10.1617/s11527-020-01543-3
Rief M, Oesterhelt F, Heymann B, Gaub H E. Science, 1997, 275(5304): 1295. doi:10.1126/science.275.5304.1295http://dx.doi.org/10.1126/science.275.5304.1295
Liu Y, Vancso G J. Prog Polym Sci, 2020, 104: 101232. doi:10.1016/j.progpolymsci.2020.101232http://dx.doi.org/10.1016/j.progpolymsci.2020.101232
Zhang W, Zhang X. Prog Polym Sci, 2003, 28(8): 1271-1295. doi:10.1016/s0079-6700(03)00046-7http://dx.doi.org/10.1016/s0079-6700(03)00046-7
Zhang Wenke(张文科). Acta Polymerica Sinica(高分子学报), 2011, (9): 913-922. doi:10.3724/sp.j.1105.2011.11124http://dx.doi.org/10.3724/sp.j.1105.2011.11124
Zhang X, Liu C, Wang Z. Polymer, 2008, 49(16): 3353-3361. doi:10.1016/j.polymer.2008.04.056http://dx.doi.org/10.1016/j.polymer.2008.04.056
Liu N, Zhang W. ChemPhysChem, 2012, 13(9): 2238-2256. doi:10.1002/cphc.201200154http://dx.doi.org/10.1002/cphc.201200154
Liu K, Song Y, Feng W, Liu N, Zhang W, Zhang X. J Am Chem Soc, 2011, 133(10): 3226-3229. doi:10.1021/ja108022hhttp://dx.doi.org/10.1021/ja108022h
Song Y, Ma Z, Yang P, Zhang X, Lyu X, Jiang K, Zhang W. Macromolecules, 2019, 52(3): 1327-1333. doi:10.1021/acs.macromol.8b02702http://dx.doi.org/10.1021/acs.macromol.8b02702
Yang P, Song Y, Feng W, Zhang W. Macromolecules, 2018, 51(18): 7052-7060. doi:10.1021/acs.macromol.8b01544http://dx.doi.org/10.1021/acs.macromol.8b01544
Ludwigs S. P3HT Revisited—From Molecular Scale to Solar Cell Devices. Berlin: Springer, 2014. doi:10.1007/978-3-662-45145-8http://dx.doi.org/10.1007/978-3-662-45145-8
Kondo Y, Osaka M, Benten H, Ohkita H, Ito S. Acs Macro Lett, 2015, 4(9): 879-885. doi:10.1021/acsmacrolett.5b00352http://dx.doi.org/10.1021/acsmacrolett.5b00352
Reid O G, Munechika K, Ginger D S. Nano Lett, 2008, 8(6): 1602-1609. doi:10.1021/nl080155lhttp://dx.doi.org/10.1021/nl080155l
Bolsée J C, Oosterbaan W D, Lutsen L, Vanderzande D, Manca J. Org Electron, 2011, 12(12): 2084-2089. doi:10.1016/j.orgel.2011.08.022http://dx.doi.org/10.1016/j.orgel.2011.08.022
Dante M, Peet J, Nguyen T Q. J Phys Chem C, 2008, 112(18): 7241-7249. doi:10.1021/jp712086qhttp://dx.doi.org/10.1021/jp712086q
Wood D, Hancox I, Jones T S, Wilson N R. J Phys Chem C, 2015, 119(21): 11459-11467. doi:10.1021/acs.jpcc.5b02197http://dx.doi.org/10.1021/acs.jpcc.5b02197
Osaka M, Benten H, Ohkita H, Ito S. Macromolecules, 2017, 50(4): 1618-1625. doi:10.1021/acs.macromol.6b02604http://dx.doi.org/10.1021/acs.macromol.6b02604
Wang B, Chen J, Shen C, Reiter G, Zhang B. Macromolecules, 2019, 52(16): 6088-6096. doi:10.1021/acs.macromol.9b01146http://dx.doi.org/10.1021/acs.macromol.9b01146
Kamkar D A, Wang M, Wudl F, Nguyen T Q. ACS Nano, 2012, 6(2): 1149-1157. doi:10.1021/nn204565hhttp://dx.doi.org/10.1021/nn204565h
Coffey D C, Reid O G, Rodovsky D B, Bartholomew G P, Ginger D S. Nano Lett, 2007, 7(3): 738-744. doi:10.1021/nl062989ehttp://dx.doi.org/10.1021/nl062989e
Palermo V, Palma M, Samorì P. Adv Mater, 2006, 18(2): 145-164. doi:10.1002/adma.200501394http://dx.doi.org/10.1002/adma.200501394
Liscio A, Palermo V, Samorì P. Acc Chem Res, 2010, 43(4): 541-550. doi:10.1021/ar900247phttp://dx.doi.org/10.1021/ar900247p
Musumeci C, Liscio A, Palermo V, Samorì P. Mater Today, 2014, 17(10): 504-517. doi:10.1016/j.mattod.2014.05.010http://dx.doi.org/10.1016/j.mattod.2014.05.010
Dazzi A, Prater C B. Chem Rev, 2017, 117(7): 5146-5173. doi:10.1021/acs.chemrev.6b00448http://dx.doi.org/10.1021/acs.chemrev.6b00448
Verma P. Chem Rev, 2017, 117(9): 6447-6466. doi:10.1021/acs.chemrev.6b00821http://dx.doi.org/10.1021/acs.chemrev.6b00821
Kurouski D, Dazzi A, Zenobi R, Centrone A. Chem Soc Rev, 2020, 49(11): 3315-3347. doi:10.1039/c8cs00916chttp://dx.doi.org/10.1039/c8cs00916c
Eby T, Gundusharma U, Lo M, Sahagian K, Marcott C, Kjoller K. Spectrosc Eur, 2012, 24(3): 18-21
Kelchtermans M, Lo M, Dillon E, Kjoller K, Marcott C. Vib Spectrosc, 2016, 82: 10-15. doi:10.1016/j.vibspec.2015.11.004http://dx.doi.org/10.1016/j.vibspec.2015.11.004
Gong L, Chase D B, Noda I, Liu J, Martin D C, Ni C, Rabolt J F. Macromolecules, 2015, 48(17): 6197-6205. doi:10.1021/acs.macromol.5b00638http://dx.doi.org/10.1021/acs.macromol.5b00638
Shao F, Müller V, Zhang Y, Schlüter A D, Zenobi R. Angew Chem Int Ed, 2017, 56(32): 9361-9366. doi:10.1002/anie.201703800http://dx.doi.org/10.1002/anie.201703800
Bhardwaj B S, Sugiyama T, Namba N, Umakoshi T, Uemura T, Sekitani T, Verma P. Materials, 2019, 12(4): 615. doi:10.3390/ma12040615http://dx.doi.org/10.3390/ma12040615
Dazzi A, Prater C B, Hu Q, Chase D B, Rabolt J F, Marcott C. Appl Spectrosc, 2012, 66(12): 1365-1384. doi:10.1366/12-06804http://dx.doi.org/10.1366/12-06804
Tri P N, Prud'homme R E. Macromolecules, 2018, 51(1): 181-188. doi:10.1021/acs.macromol.7b02019http://dx.doi.org/10.1021/acs.macromol.7b02019
Ghosh S, Ramos L, Remita S, Dazzi A, Deniset Besseau A, Beaunier P, Goubard F, Aubert P H, Remita H. New J Chem, 2015, 39(11): 8311-8320. doi:10.1039/c5nj00826chttp://dx.doi.org/10.1039/c5nj00826c
Wang W, Shao F, Kröger M, Zenobi R, Schlüter A D. J Am Chem Soc, 2019, 141(25): 9867-9871. doi:10.1021/jacs.9b01765http://dx.doi.org/10.1021/jacs.9b01765
Marcott C, Lo M, Kjoller K, Prater C, Noda I. Appl Spectrosc, 2011, 65(10): 1145-1150. doi:10.1366/11-06341http://dx.doi.org/10.1366/11-06341
Müller V, Shao F, Baljozovic M, Moradi M, Zhang Y, Jung T, Thompson W B, King B T, Zenobi R, Schlüter A D. Angew Chem Int Ed, 2017, 56(48): 15262-15266. doi:10.1002/anie.201707140http://dx.doi.org/10.1002/anie.201707140
Baldassarre L, Giliberti V, Rosa A, Ortolani M, Bonamore A, Baiocco P, Kjoller K, Calvani P, Nucara A. Nanotechnology, 2016, 27(7): 075101. doi:10.1088/0957-4484/27/7/075101http://dx.doi.org/10.1088/0957-4484/27/7/075101
Kurouski D, Van Duyne R P, Lednev I K. Analyst, 2015, 140(15): 4967-4980. doi:10.1039/c5an00342chttp://dx.doi.org/10.1039/c5an00342c
Ruggeri F S, Longo G, Faggiano S, Lipiec E, Pastore A, Dietler G. Nat Commun, 2015, 6(1): 7831. doi:10.1038/ncomms8831http://dx.doi.org/10.1038/ncomms8831
Tang F, Bao P, Su Z. Anal Chem, 2016, 88(9): 4926-4930. doi:10.1021/acs.analchem.6b00798http://dx.doi.org/10.1021/acs.analchem.6b00798
Li C, Wang Z, Liu W, Ji X, Su Z. Macromolecules, 2020, 53(7): 2686-2693. doi:10.1021/acs.macromol.0c00328http://dx.doi.org/10.1021/acs.macromol.0c00328
Falconnet D, Csucs G, Michelle Grandin H, Textor M. Biomaterials, 2006, 27(16): 3044-3063. doi:10.1016/j.biomaterials.2005.12.024http://dx.doi.org/10.1016/j.biomaterials.2005.12.024
Truskett V N, Watts M P C. Trends Biotechnol, 2006, 24(7): 312-317. doi:10.1016/j.tibtech.2006.05.005http://dx.doi.org/10.1016/j.tibtech.2006.05.005
Xue L, Han Y. Prog Polym Sci, 2011, 36(2): 269-293. doi:10.1016/j.progpolymsci.2010.07.004http://dx.doi.org/10.1016/j.progpolymsci.2010.07.004
Garcia R, Knoll A W, Riedo E. Nat Nanotechnol, 2014, 9(8): 577-587. doi:10.1038/nnano.2014.157http://dx.doi.org/10.1038/nnano.2014.157
Gartside J C, Arroo D M, Burn D M, Bemmer V L, Moskalenko A, Cohen L F, Branford W R. Nat Nanotechnol, 2018, 13(1): 53-58. doi:10.1038/s41565-017-0002-1http://dx.doi.org/10.1038/s41565-017-0002-1
Ryu Y K, Garcia R. Nanotechnology, 2017, 28(14): 142003. doi:10.1088/1361-6528/aa5651http://dx.doi.org/10.1088/1361-6528/aa5651
Farina M, Ye T, Lanzani G, di Donato A, Venanzoni G, Mencarelli D, Pietrangelo T, Morini A, Keivanidis P E. Nat Commun, 2013, 4(1): 2668. doi:10.1038/ncomms3668http://dx.doi.org/10.1038/ncomms3668
Li Y, Maynor B W, Liu J. J Am Chem Soc, 2001, 123(9): 2105-2106. doi:10.1021/ja005654mhttp://dx.doi.org/10.1021/ja005654m
Felts J R, Onses M S, Rogers J A, King W P. Adv Mater, 2014, 26(19): 2999-3002. doi:10.1002/adma.201305481http://dx.doi.org/10.1002/adma.201305481
Yan Y, Chang S, Wang T, Geng Y. Polymers, 2019, 11(10): 1590. doi:10.3390/polym11101590http://dx.doi.org/10.3390/polym11101590
Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L,Tian Z Q. Nature, 2010, 464(7287): 392-395. doi:10.1038/nature08907http://dx.doi.org/10.1038/nature08907
Wang J, Huang L, Yuan L, Zhao L, Feng X, Zhang W, Zhai L, Zhu J. Appl Surf Sci, 2012, 258(8): 3519-3523. doi:10.1016/j.apsusc.2011.11.106http://dx.doi.org/10.1016/j.apsusc.2011.11.106
Yan Y, Sun Y, Li J, Hu Z, Zhao X. Nanoscale Res Lett, 2014, 9(1): 372. doi:10.1186/1556-276x-9-372http://dx.doi.org/10.1186/1556-276x-9-372
He Y, Yan Y, Geng Y, Brousseau E. Appl Surf Sci, 2018, 427: 1076-1083. doi:10.1016/j.apsusc.2017.08.134http://dx.doi.org/10.1016/j.apsusc.2017.08.134
Zhang L, Dong J. Nanotechnology, 2012, 23(8): 085303. doi:10.1088/0957-4484/23/8/085303http://dx.doi.org/10.1088/0957-4484/23/8/085303
Deng J, Zhang L, Dong J, Cohen P H. J Manuf Process, 2016, 24: 195-202. doi:10.1016/j.jmapro.2016.09.003http://dx.doi.org/10.1016/j.jmapro.2016.09.003
He Y, Yan Y, Wang J, Geng Y, Xue B, Zhao X. IEEE Trans Nanotechnol, 2019, 18: 351-357. doi:10.1109/tnano.2019.2904336http://dx.doi.org/10.1109/tnano.2019.2904336
Jradi K, Bistac S, Schmitt M, Schmatulla A, Reiter G. Eur Phys J E, 2009, 29(4): 383-389. doi:10.1140/epje/i2009-10480-0http://dx.doi.org/10.1140/epje/i2009-10480-0
Jradi K, Bistac S, Schmitt M, Reiter G. Polymer, 2009, 50(15): 3724-3729. doi:10.1016/j.polymer.2009.06.003http://dx.doi.org/10.1016/j.polymer.2009.06.003
Mamin H J, Rugar D. Appl Phys Lett, 1992, 61(8): 1003-1005. doi:10.1063/1.108460http://dx.doi.org/10.1063/1.108460
Gotsmann B, Duerig U, Frommer J, Hawker C J. Adv Funct Mater, 2006, 16(11): 1499-1505. doi:10.1002/adfm.200500724http://dx.doi.org/10.1002/adfm.200500724
Knoll A W, Pires D, Coulembier O, Dubois P, Hedrick J L, Frommer J, Duerig U. Adv Mater, 2010, 22(31): 3361-3365. doi:10.1002/adma.200904386http://dx.doi.org/10.1002/adma.200904386
Szoszkiewicz R, Okada T, Jones S C, Li T D, King W P, Marder S R, Riedo E. Nano Lett, 2007, 7(4): 1064-1069. doi:10.1021/nl070300fhttp://dx.doi.org/10.1021/nl070300f
Binnig G, Despont M, Drechsler U, Häberle W, Lutwyche M, Vettiger P, Mamin H J, Chui B W, Kenny T W. Appl Phys Lett, 1999, 74(9): 1329-1331. doi:10.1063/1.123540http://dx.doi.org/10.1063/1.123540
Vettiger P, Despont M, Drechsler U, Durig U, Haberle W, Lutwyche M I, Rothuizen H E, Stutz R, Widmer R, Binnig G K. IBM J Res Dev, 2000, 44(3): 323-340. doi:10.1147/rd.443.0323http://dx.doi.org/10.1147/rd.443.0323
Lutwyche M I, Despont M, Drechsler U, Dürig U, Häberle W, Rothuizen H, Stutz R, Widmer R, Binnig G K, Vettiger P. Appl Phys Lett, 2000, 77(20): 3299-3301. doi:10.1063/1.1326486http://dx.doi.org/10.1063/1.1326486
Lyuksyutov S F, Vaia R A, Paramonov P B, Juhl S, Waterhouse L, Ralich R M, Sigalov G, Sancaktar E. Nat Mater, 2003, 2(7): 468-472. doi:10.1038/nmat926http://dx.doi.org/10.1038/nmat926
Wouters D, Hoeppener S, Schubert U S. Angew Chem Int Ed, 2009, 48(10): 1732-1739. doi:10.1002/anie.200801013http://dx.doi.org/10.1002/anie.200801013
Maoz R, Cohen S R, Sagiv J. Adv Mater, 1999, 11(1): 55-61. doi:10.1002/(sici)1521-4095(199901)11:1<55::aid-adma55>3.0.co;2-8http://dx.doi.org/10.1002/(sici)1521-4095(199901)11:1<55::aid-adma55>3.0.co;2-8
Wang B, Zhang B, Shen C, Chen J, Reiter G. Macromolecules, 2018, 51(19): 7692-7698. doi:10.1021/acs.macromol.8b01465http://dx.doi.org/10.1021/acs.macromol.8b01465
Liu G, Petrosko S H, Zheng Z, Mirkin C A. Chem Rev, 2020, 120(13): 6009-6047. doi:10.1021/acs.chemrev.9b00725http://dx.doi.org/10.1021/acs.chemrev.9b00725
Brown K A, Eichelsdoerfer D J, Liao X, He S, Mirkin C A. Front Phys, 2014, 9(3): 385-397. doi:10.1007/s11467-013-0381-1http://dx.doi.org/10.1007/s11467-013-0381-1
Liu G, Zhou Y, Banga R S, Boya R, Brown K A, Chipre A J, Nguyen S T, Mirkin C A. Chem Sci, 2013, 4(5): 2093-2099. doi:10.1039/c3sc50423ahttp://dx.doi.org/10.1039/c3sc50423a
Lim J H, Mirkin C A. Adv Mater, 2002, 14(20): 1474-1477. doi:10.1002/1521-4095(20021016)14:20<1474::aid-adma1474>3.0.co;2-2http://dx.doi.org/10.1002/1521-4095(20021016)14:20<1474::aid-adma1474>3.0.co;2-2
Su M, Aslam M, Fu L, Wu N, Dravid V P. Appl Phys Lett, 2004, 84(21): 4200-4202. doi:10.1063/1.1737469http://dx.doi.org/10.1063/1.1737469
Lu H H, Lin C Y, Hsiao T C, Fang Y Y, Ho K C, Yang D, Lee C K, Hsu S M, Lin C W. Anal Chim Acta, 2009, 640(1): 68-74. doi:10.1016/j.aca.2009.03.006http://dx.doi.org/10.1016/j.aca.2009.03.006
Huang Q, Wang H, Gao H, Cheng P, Zhu L, Wang C, Yang Y. J Phys Chem Lett, 2019, 10(2): 214-222. doi:10.1021/acs.jpclett.8b03143http://dx.doi.org/10.1021/acs.jpclett.8b03143
0
Views
633
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution