Li-xian Huang, Bo Liu, Dong-mei Cui. Chain Shuttling Copolymerization of Ethylene and Styrene Catalyzed by Rare-earth Metal Complexes. [J]. Acta Polymerica Sinica 52(5):514-521(2021)
DOI:
Li-xian Huang, Bo Liu, Dong-mei Cui. Chain Shuttling Copolymerization of Ethylene and Styrene Catalyzed by Rare-earth Metal Complexes. [J]. Acta Polymerica Sinica 52(5):514-521(2021) DOI: 10.11777/j.issn1000-3304.2020.20268.
Chain Shuttling Copolymerization of Ethylene and Styrene Catalyzed by Rare-earth Metal Complexes增强出版
As a facile strategy for one pot synthesis of multiblock polymers
chain shuttling polymerization has aroused considerable attention. However
the construction of the corresponding catalytic system is difficult
leading to the limited number of monomers to successfully achieve chain shuttling polymerization. Herein
we conducted the investigation of chain shuttling polymerization of ethylene and styrene on the basis that in the presence of Al
i
Bu
3
rare-earth metal complex
1
catalyzed the copolymerization of ethylene and styrene to give the alternating sequence enriched copolymer with the chain transfer efficiency of 100%. Firstly
complex
2
was employed to catalyze the copolymerization of ethylene and styrene. The styrene content of the afforded copolymer is less than 4%. Thus
ethylene polymerization was conducted under various ratios of [Al]
0
to [
2
]
0
. The molecular weight of the afforded polyethylene exponentially decreased with the increase of [Al]
0
/[
2
]
0
with the power of −0.778
suggesting that the chain transfer efficiency is less than 100%. The ternary catalytic system composed of
1
2
and Al
i
Bu
3
catalyzed the copolymerization of ethylene and styrene to afford copolymers with bimodal molecular weight distributions
indicating the unsuccess of chain shuttling. Then after screening a series of complexes
3
was found to catalyse the copolymerization of ethylene and styrene with the chain transfer efficiency of 100% as the molecular weights of the afforded copolymers syndiotatic polystyrene sequence enriched exponentially decreased with the increase of [Al]
0
/[
3
]
0
with the power of −1.097. When the ratio of [Al
i
Bu
3
]
0
to [
1
+
3
]
0
was no less than 20
the ternary catalytic system composed of
1
3
and Al
i
Bu
3
catalyzed the copolymerization of ethylene and styrene to afford multi-block copolymers containing alternating sequences and syndiotactic polystyrene sequences with unimodal molecular weight distributions
indicating the success of chain shuttling. The sequence distribution was effectively controlled by adjusting the ratio of
1
to
3
.
关键词
链穿梭聚合稀土金属配合物序列可控聚合乙烯苯乙烯
Keywords
Chain shuttling polymerizationRare-earth metal complexSequence control polymerizationEthyleneStyrene
references
Arriola D J, Carnahan E M, Hustad P D, Kuhlman R L, Wenzel T T . Science , 2006 . 312 714 - 719 . DOI:10.1126/science.1125268http://doi.org/10.1126/science.1125268 .
Zintl M, Rieger B . Angew Chem Int Ed , 2007 . 46 333 - 335 . DOI:10.1002/anie.200602889http://doi.org/10.1002/anie.200602889 .
Mohammadi Y, Ahmadi M, Saeb M R, Khorasani M M, Yang P, Stadler F J . Macromolecules , 2014 . 47 4778 - 4789 . DOI:10.1021/ma500874hhttp://doi.org/10.1021/ma500874h .
Vittoria A, Busico V, Cannavacciuolo F D, Cipullo R . ACS Catal , 2018 . 8 5051 - 5061 . DOI:10.1021/acscatal.8b00841http://doi.org/10.1021/acscatal.8b00841 .
Yin X, Gao H, Yang F, Pan L, Wang B, Ma Z, Li Y S . Chinese J Polym Sci , 2020 . 38 1192 - 1201 . DOI:10.1007/s10118-020-2446-2http://doi.org/10.1007/s10118-020-2446-2 .
Pan L, Zhang K Y, Nishiura M, Hou Z M . Angew Chem Int Ed , 2011 . 50 12012 - 12015 . DOI:10.1002/anie.201104011http://doi.org/10.1002/anie.201104011 .
Valente A, Stoclet G, Bonnet F, Mortreux A, Visseaux M, Zinck P . Angew Chem Int Ed , 2014 . 53 4638 - 4641 . DOI:10.1002/anie.201311057http://doi.org/10.1002/anie.201311057 .
Soga K, Lee D H, Yanagihara H . Polym Bull , 1988 . 20 237 - 241.
Mani P, Burns C M . Macromolecules , 1991 . 24 5476 - 5477 . DOI:10.1021/ma00019a042http://doi.org/10.1021/ma00019a042 .
Lee D H, Yoon K B, Kim H J, Woo S S, Noh S K . J Appl Polym Sci , 1998 . 67 2187 - 2198 . DOI:10.1002/(SICI)1097-4628(19980328)67:13<2187::AID-APP9>3.0.CO;2-Ahttp://doi.org/10.1002/(SICI)1097-4628(19980328)67:13<2187::AID-APP9>3.0.CO;2-A .
Wu Q, Ye Z, Gao Q H, Lin S A . Macromol Chem Phys , 1998 . 199 1715 - 1720 . DOI:10.1002/(SICI)1521-3935(19980801)199:8<1715::AID-MACP1715>3.0.CO;2-Khttp://doi.org/10.1002/(SICI)1521-3935(19980801)199:8<1715::AID-MACP1715>3.0.CO;2-K .
Xu G X, Lin S A . Macromolecules , 1997 . 30 685 - 693 . DOI:10.1021/ma960792ahttp://doi.org/10.1021/ma960792a .
Pellecchia C, Pappalardo D, D’Arco M, Zambelli A . Macromolecules , 1996 . 29 1158 - 1162 . DOI:10.1021/ma951152vhttp://doi.org/10.1021/ma951152v .
Oliva L, Mazza S, Longo P . Macromol Chem Phys , 1996 . 197 3115 - 3122 . DOI:10.1002/macp.1996.021971005http://doi.org/10.1002/macp.1996.021971005 .
Oliva L, Izzo L, Longo P . Macromol Rapid Commun , 1996 . 17 745 - 748 . DOI:10.1002/marc.1996.030171010http://doi.org/10.1002/marc.1996.030171010 .
Longo P, Grassi A, Oliva L . Macromol Chem Phys , 1990 . 191 2387 - 2396 . DOI:10.1002/macp.1990.021911016http://doi.org/10.1002/macp.1990.021911016 .
Arriola D J, Bokota M, Campbell R E Jr, Klosin J, LaPointe R E, Redwine O D, Shankar R B, Timmers F J, Abboud K A . J Am Chem Soc , 2007 . 129 7065 - 7076 . DOI:10.1021/ja070061yhttp://doi.org/10.1021/ja070061y .
Luo Y, Baldamus J, Hou Z M . J Am Chem Soc , 2004 . 126 13910 - 13911 . DOI:10.1021/ja046063phttp://doi.org/10.1021/ja046063p .
Li X F, Wang X Y, Tong X, Zhang H X, Chen Y Y, Liu Y, Liu H, Wang X J, Nishiura M, He H, Lin Z G, Zhang S W, Hou Z M . Organometallics , 2013 . 32 1445 - 1458 . DOI:10.1021/om3011036http://doi.org/10.1021/om3011036 .
Liu B, Wang L F, Wu C J, Cui D M . Polym Chem , 2019 . 10 235 - 243 . DOI:10.1039/C8PY01326Hhttp://doi.org/10.1039/C8PY01326H .
Chien J C W, Tsai W M, Rausch M D . J Am Chem Soc , 1991 . 113 8570 - 8571 . DOI:10.1021/ja00022a081http://doi.org/10.1021/ja00022a081 .
Lin F, Wang X B, Pan Y P, Wang M Y, Liu B, Luo Y, Cui D M . ACS Catal , 2016 . 6 176 - 185 . DOI:10.1021/acscatal.5b02334http://doi.org/10.1021/acscatal.5b02334 .
Bambirra S, Otten E, Leusen D, Meetsma A, Hessen B Z. . Anorg Allg Chemie , 2006 . 632 1950 - 1952 . DOI:10.1002/zaac.200600145http://doi.org/10.1002/zaac.200600145 .
Chen R H, Yao C G, Wang M Y, Xie H Y, Wu C J, Cui D M . Organometallics , 2015 . 34 455 - 461 . DOI:10.1021/om500992vhttp://doi.org/10.1021/om500992v .
Ethylene/Isoprene Copolymerization with Supported Ziegler-Natta Catalyst Containing Internal Electron Donor
Copolymerization of Myrcene with Styrene Catalyzed by Half-sandwich Scandium Complexes
Copolymerization of Ethylene and Conjugated Dienes Catalyzed by Half-sandwich Scandium Complexes
Synthesis and Characterization of Multi-block Polymers Consisting of Polyethylene/Ethylene-propylene Random Copolymer via [N,P]-type Non-metallocene Catalysts
Synthesis of Thioether Compounds and Their Application in Initiating/Controlling the Radical Polymerization of Styrene
Related Author
No data
Related Institution
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
State Key Laboratory of Effective Utilization of Chemical Resources, Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology
College of Materials Science and Engineering, Beijing University of Chemical Technology