浏览全部资源
扫码关注微信
西湖大学工学院 杭州 310024
Published:3 June 2021,
Published Online:9 April 2021,
Received:31 December 2020,
Revised:4 February 2021,
扫 描 看 全 文
Chao-qun Niu, Yu-xi Xu. Two-dimensional Polymers: Preparation, Assembly and High-efficiency Electrochemical Applications. [J]. Acta Polymerica Sinica 52(6):549-564(2021)
Chao-qun Niu, Yu-xi Xu. Two-dimensional Polymers: Preparation, Assembly and High-efficiency Electrochemical Applications. [J]. Acta Polymerica Sinica 52(6):549-564(2021) DOI: 10.11777/j.issn1000-3304.2020.20288.
二维高分子是通过共价键连接的在二维平面内具有周期性排列结构的分子片,因其具备质轻、柔性、可调结构和高适应性等优点近年来受到了国内外研究学者的广泛关注. 可控制备二维高分子对于研究二维高分子的结构与性能关系、合成特定功能化改性的二维高分子具有重要的意义. 本文以本课题组的研究工作为出发点首先围绕一种天然二维高分子材料(石墨烯)的快速制备、组装、功能性复合及其电化学应用进行总结,然后针对新型合成二维高分子材料(二维共价有机框架(2D COF),硅烯和二维共价三嗪框架(2D CTF))的制备方法、有效的分子设计和电化学应用进行总结,用于理解二维高分子的构效关系,为实现二维高分子的可控制备和高效应用提供了思路.
Two-dimensional polymers (2DPs) are molecular sheets of atomic layer thickness with periodic arrangements in a two-dimensional plane connected by covalent bonds. They have drawn much attention in recent years because of their lightweight
flexibility
adjustable structure
and high adaptability. Graphene is a unique natural 2DP
with a honeycomb lattice connected by sp
2
hybridized carbon atoms. Due to its excellent conjugated structure and stability
graphene has huge application potential in energy storage
environment
and biomedicine. However
there is a strong
π
-
π
stacking effect between two-dimensional graphene sheets
which leads to its poor dispersion and limits its performance in practical applications. To address the above issues
our group has developed strategies for the preparation of three-dimensional-graphene (3DG) nanocomposites with a series of electrochemically active materials for efficient electrochemical energy storage. What’s more
inspired by graphene
new kinds of 2DP materials have been developed
such as two-dimensional covalent organic framework (2D COF) and two-dimensional covalent triazine framework (2D CTF). We hope to develop facile preparation methods for high-quality 2DPs. Through the effective assembly
combination
and functional modification
large-scale applications of 2DP in the field of electrochemical energy storage and conversion can be realized. The controllable preparation of 2DPs is of great significance to the study of the relationship between the structure and performance of 2DPs. This article first focuses on rapid preparation
assembly
functional composite
and electrochemical applications of the natural two-dimensional graphene. Then
the preparation methods and effective molecular design of 2D COF
silicene
and 2D CTF are summarized. The article provides ideas for the controllable preparation and efficient application of 2DPs with an emphasis on the structure-property relationship of 2DPs.
二维高分子三维石墨烯二维共价有机框架二维共价三嗪框架电化学能源存储
Two-dimensional polymerThree-dimensional grapheneTwo-dimensional covalent organic frameworkTwo-dimensional covalent triazine frameworkElectrochemical energy storage
Staudinger H . Berichte der Deutschen Chemischen Gesellschaft (A and B Series) , 1920 . 53 ( 6 ): 1073 - 1085 . DOI:10.1002/cber.19200530627http://doi.org/10.1002/cber.19200530627 .
Chen D, Feng H, Li J . Chem Rev , 2012 . 112 ( 11 ): 6027 - 6053 . DOI:10.1021/cr300115ghttp://doi.org/10.1021/cr300115g .
Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R, Kim K S . Chem Rev , 2012 . 112 ( 11 ): 6156 - 6214 . DOI:10.1021/cr3000412http://doi.org/10.1021/cr3000412 .
Sakamoto J, van Heijst J, Lukin O, Schlüter A D . Angew Chem Int Ed , 2009 . 48 ( 6 ): 1030 - 1069 . DOI:10.1002/anie.200801863http://doi.org/10.1002/anie.200801863 .
Boott C E, Nazemi A, Manners I . Angew Chem Int Ed , 2015 . 54 ( 47 ): 13876 - 13894 . DOI:10.1002/anie.201502009http://doi.org/10.1002/anie.201502009 .
Dong R, Han P, Arora H, Ballabio M, Karakus M, Zhang Z, Shekhar C . Nat Mater , 2018 . 17 ( 11 ): 1027 - 1032 . DOI:10.1038/s41563-018-0189-zhttp://doi.org/10.1038/s41563-018-0189-z .
Zhuang L Z, Ge L, Liu H L, Jiang Z R, Jia Y, Li Z H, Yang D J, Hocking R K, Li M R, Zhang L Z, Wang X, Yao X D, Zhu Z H. . Angew Chem Int Ed , 2019 . 58 ( 38 ): 13565 - 13572 . DOI:10.1002/anie.201907600http://doi.org/10.1002/anie.201907600 .
Liu Y X, Wei Y N, Liu M H, Bai Y C, Wang X Y, Shang S C, Chen J Y, Liu Y Q . Angew Chem Int Ed , 2020 . 60 ( 6 ): 2887 - 2891 . DOI:10.1002/anie.202012971http://doi.org/10.1002/anie.202012971 .
Colson J W, Dichtel W R . Nat Chem , 2013 . 5 ( 6 ): 453 - 465 . DOI:10.1038/nchem.1628http://doi.org/10.1038/nchem.1628 .
Wang L, Sahabudeen H, Zhang T, Dong R . NPJ 2D Mater Appl , 2018 . 2 ( 1 ): 26 DOI:10.1038/s41699-018-0071-5http://doi.org/10.1038/s41699-018-0071-5 .
Geim A K, Novoselov K S . Nat Mater , 2007 . 6 ( 3 ): 183 - 191 . DOI:10.1038/nmat1849http://doi.org/10.1038/nmat1849 .
An Y L, Tian Y, Zhang Y C, Wei C L, Tan L W, Zhang C H, Cui N X, Xiong S L, Feng J K, Qian Y T . ACS Nano , 2020 . 14 ( 12 ): 17574 - 17588 . DOI:10.1021/acsnano.0c08336http://doi.org/10.1021/acsnano.0c08336 .
Gao C W, Jiang Z J, Wang P X, Jensen L R, Zhang Y F, Yue Y Z . Nano Energy , 2020 . 74 104868 DOI:10.1016/j.nanoen.2020.104868http://doi.org/10.1016/j.nanoen.2020.104868 .
Xu Q, Li X F, Sari H M K, Li W B, Liu W, Hao Y C, Qin J, Cao B, Xiao W, Xu Y, Wei Y, Kou L, Tian Z Y, Shao L, Zhang C, Sun X L . Nano Energy , 2020 . 77 105034 DOI:10.1016/j.nanoen.2020.105034http://doi.org/10.1016/j.nanoen.2020.105034 .
Xu Y, Sheng K, Li C, Shi G . ACS Nano , 2010 . 4 ( 7 ): 4324 - 4330 . DOI:10.1021/nn101187zhttp://doi.org/10.1021/nn101187z .
Xu Y, Wu Q, Sun Y, Bai H, Shi G . ACS Nano , 2010 . 4 ( 12 ): 7358 - 7362 . DOI:10.1021/nn1027104http://doi.org/10.1021/nn1027104 .
Wang M, Duan X, Xu Y, Duan X . ACS Nano , 2016 . 10 ( 8 ): 7231 - 7247 . DOI:10.1021/acsnano.6b03349http://doi.org/10.1021/acsnano.6b03349 .
Xu Y, Shi G, Duan X . Accounts Chem Res , 2015 . 48 ( 6 ): 1666 - 1675 . DOI:10.1021/acs.accounts.5b00117http://doi.org/10.1021/acs.accounts.5b00117 .
Côté A P, Benin A I, Ockwig N W, Keeffe M, Matzger A J, Yaghi O M . Science , 2005 . 310 ( 5751 ): 1166 DOI:10.1126/science.1120411http://doi.org/10.1126/science.1120411 .
Xu H, Gao J, Jiang D . Nat Chem , 2015 . 7 ( 11 ): 905 - 912 . DOI:10.1038/nchem.2352http://doi.org/10.1038/nchem.2352 .
Wang N, Cheng G, Guo L, Tan B, Jin S . Adv Funct Mater , 2019 . 29 ( 43 ): 1904781 DOI:10.1002/adfm.201904781http://doi.org/10.1002/adfm.201904781 .
Kuhn P, Antonietti M, Thomas A . Angew Chem Int Ed , 2008 . 47 ( 18 ): 3450 - 3453 . DOI:10.1002/anie.200705710http://doi.org/10.1002/anie.200705710 .
Shi R, Liu L, Lu Y, Wang C, Li Y, Li L, Yan Z, Chen J . Nat Commun , 2020 . 11 ( 1 ): 178 DOI:10.1038/s41467-019-13739-5http://doi.org/10.1038/s41467-019-13739-5 .
Talapaneni S N, Hwang T H, Je S H, Buyukcakir O, Choi J W, Coskun A . Angew Chem Int Ed , 2016 . 55 ( 9 ): 3106 - 3111 . DOI:10.1002/anie.201511553http://doi.org/10.1002/anie.201511553 .
Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R . Science , 2011 . 332 ( 6026 ): 228 DOI:10.1126/science.1202747http://doi.org/10.1126/science.1202747 .
Qi H, Sahabudeen H, Liang B, Položij M, Addicoat M A, Gorelik T E, Hambsch M, Mundszinger M, Park S, Lotsch B V, Mannsfeld S C B, Zheng Z, Dong R, Heine T, Feng X, Kaiser U . Sci Adv , 2020 . 6 ( 33 ): eabb5976 DOI:10.1126/sciadv.abb5976http://doi.org/10.1126/sciadv.abb5976 .
Singh R K, Kumar R, Singh D P . RSC Adv , 2016 . 6 ( 69 ): 64993 - 65011 . DOI:10.1039/C6RA07626Bhttp://doi.org/10.1039/C6RA07626B .
Geng K, He T, Liu R, Dalapati S, Tan K T, Li Z, Tao S, Gong Y, Jiang Q, Jiang D . Chem Rev , 2020 . 120 ( 16 ): 8814 - 8933 . DOI:10.1021/acs.chemrev.9b00550http://doi.org/10.1021/acs.chemrev.9b00550 .
Xiao P, Xu Y . J Mater Chem A , 2018 . 6 ( 44 ): 21676 - 21695 . DOI:10.1039/C8TA02820Fhttp://doi.org/10.1039/C8TA02820F .
Liu Jingjing(刘晶晶), Xu Yuxi(徐宇曦) . Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 3 ): 219 - 232 . DOI:10.11777/j.issn1000-3304.2019.18222http://doi.org/10.11777/j.issn1000-3304.2019.18222 .
Sun T, Wang C, Xu Y . Chem Res Chinese U , 2020 . 36 ( 4 ): 640 - 647 . DOI:10.1007/s40242-020-0179-yhttp://doi.org/10.1007/s40242-020-0179-y .
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science , 2004 . 306 ( 5696 ): 666 - 669 . DOI:10.1126/science.1102896http://doi.org/10.1126/science.1102896 .
Cote L J, Cruz-Silva R, Huang J . J Am Chem Soc , 2009 . 131 ( 31 ): 11027 - 11032 . DOI:10.1021/ja902348khttp://doi.org/10.1021/ja902348k .
Schwenke A M, Hoeppener S, Schubert U S . Adv Mater , 2015 . 27 ( 28 ): 4113 - 4141 . DOI:10.1002/adma.201500472http://doi.org/10.1002/adma.201500472 .
Zhu Y, Murali S, Stoller M D, Velamakanni A, Piner R D, Ruoff R S . Carbon , 2010 . 48 ( 7 ): 2118 - 2122 . DOI:10.1016/j.carbon.2010.02.001http://doi.org/10.1016/j.carbon.2010.02.001 .
Kwon O Y, Choi S W, Park K W, Kwon Y B. J Ind Eng Chemhttps://www.cheric.org/research/tech/periodicals/view.php?seq=438952, 2003, 9(6): 743−747.
Liu R, Zhang Y, Ning Z, Xu Y . Angew Chem Int Ed , 2017 . 56 ( 49 ): 15677 - 15682 . DOI:10.1002/anie.201708714http://doi.org/10.1002/anie.201708714 .
Li J, Wang X, Mei K C, Chang C H, Xia T . Nano Today , 2020 . 37 101061 DOI:10.1016/j.nantod.2020.101061http://doi.org/10.1016/j.nantod.2020.101061 .
Becerril H, Mao J, Liu Z, Stoltenberg R, Bao Z, Chen Y . ACS Nano , 2008 . 2 ( 3 ): 463 - 470 . DOI:10.1021/nn700375nhttp://doi.org/10.1021/nn700375n .
Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z A . Nano Res , 2012 . 5 ( 3 ): 199 - 212 . DOI:10.1007/s12274-012-0200-yhttp://doi.org/10.1007/s12274-012-0200-y .
Park S, An J, Jung I, Piner R D, An S J, Li X, Velamakanni A, Ruoff R S . Nano Lett , 2009 . 9 ( 4 ): 1593 - 1597 . DOI:10.1021/nl803798yhttp://doi.org/10.1021/nl803798y .
Zhu L, Liu R, Fang Z, Agboola P O, Al-Khalli N F, Shakir I, Xu Y . ACS Appl Mater Interfaces , 2019 . 11 ( 2 ): 2218 - 2224 . DOI:10.1021/acsami.8b16188http://doi.org/10.1021/acsami.8b16188 .
Lu Y, Chen J . Nat Rev Chem , 2020 . 4 ( 3 ): 127 - 142 . DOI:10.1038/s41570-020-0160-9http://doi.org/10.1038/s41570-020-0160-9 .
Zhang K, Guo C, Zhao Q, Niu Z, Chen J . Adv Sci , 2015 . 2 ( 5 ): 1500018 DOI:10.1002/advs.201500018http://doi.org/10.1002/advs.201500018 .
Yang G, Bu F, Huang Y, Zhang Y, Shakir I, Xu Y . ChemSusChem , 2017 . 10 ( 17 ): 3419 - 3426 . DOI:10.1002/cssc.201701175http://doi.org/10.1002/cssc.201701175 .
Wu Z-S, Parvez K, Winter A, Vieker H, Liu X, Han S, Turchanin A, Feng X, Müllen K . Adv Mater , 2014 . 26 ( 26 ): 4552 - 4558 . DOI:10.1002/adma.201401228http://doi.org/10.1002/adma.201401228 .
Huang Y, Li K, Jingjing L, Zhong X, Duan X, Shakir I, Xu Y . J Mater Chem A , 2017 . 5 ( 6 ): 2710 - 2716 . DOI:10.1039/C6TA09754Ehttp://doi.org/10.1039/C6TA09754E .
Zhang Y, Huang Y, Yang G, Bu F, Li K, Shakir I, Xu Y . ACS Appl Mater Interfaces , 2017 . 9 ( 18 ): 15549 - 15556 . DOI:10.1021/acsami.7b03687http://doi.org/10.1021/acsami.7b03687 .
Wen L, Li F, Cheng H M . Adv Mater , 2016 . 28 ( 22 ): 4306 - 4337 . DOI:10.1002/adma.201504225http://doi.org/10.1002/adma.201504225 .
Huang Y, Li K, Yang G, Aboud M F A, Shakir I, Xu Y . Small , 2018 . 14 ( 13 ): 1703969 DOI:10.1002/smll.201703969http://doi.org/10.1002/smll.201703969 .
Kumar N A, Choi H J, Shin Y R, Chang D W, Dai L, Baek J B . ACS Nano , 2012 . 6 ( 2 ): 1715 - 1723 . DOI:10.1021/nn204688chttp://doi.org/10.1021/nn204688c .
Li K, Liu J, Huang Y, Bu F, Xu Y . J Mater Chem A , 2017 . 5 ( 11 ): 5466 - 5474 . DOI:10.1039/C6TA11224Bhttp://doi.org/10.1039/C6TA11224B .
Zhao R, Li K, Liu R, Sarfraz M, Shakir I, Xu Y . J Mater Chem A , 2017 . 5 ( 36 ): 19098 - 19106 . DOI:10.1039/C7TA05908Fhttp://doi.org/10.1039/C7TA05908F .
Li K, Huang Y, Liu J, Sarfraz M, Agboola P O, Shakir I, Xu Y . J Mater Chem A , 2018 . 6 ( 4 ): 1802 - 1808 . DOI:10.1039/C7TA09041Bhttp://doi.org/10.1039/C7TA09041B .
Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X . J Am Chem Soc , 2015 . 137 ( 13 ): 4288 - 4291 . DOI:10.1021/jacs.5b00046http://doi.org/10.1021/jacs.5b00046 .
Su D, Cortie M, Fan H, Wang G . Adv Mater , 2017 . 29 ( 48 ): 1700587 DOI:10.1002/adma.201700587http://doi.org/10.1002/adma.201700587 .
Liu Y, Li G, Fu J, Chen Z, Peng X . Angew Chem Int Ed , 2017 . 56 ( 22 ): 6176 - 6180 . DOI:10.1002/anie.201700686http://doi.org/10.1002/anie.201700686 .
Choi K M, Jeong H M, Park J H, Zhang Y B, Kang J K, Yaghi O M . ACS Nano , 2014 . 8 ( 7 ): 7451 - 7457 . DOI:10.1021/nn5027092http://doi.org/10.1021/nn5027092 .
Bu F, Feng X, Jiang T, Shakir I, Xu Y . Chem Eur J , 2017 . 23 ( 35 ): 8358 - 8363 . DOI:10.1002/chem.201700742http://doi.org/10.1002/chem.201700742 .
Atwater H A, Polman A . Nat Mater , 2010 . 9 ( 3 ): 205 - 213 . DOI:10.1038/nmat2629http://doi.org/10.1038/nmat2629 .
Xiao P, Bu F, Zhao R, Aly Aboud M F, Shakir I, Xu Y . ACS Nano , 2018 . 12 ( 4 ): 3947 - 3953 . DOI:10.1021/acsnano.8b01488http://doi.org/10.1021/acsnano.8b01488 .
Xiao P, Li S, Yu C, Wang Y, Xu Y . ACS Nano , 2020 . 14 ( 8 ): 10210 - 10218 . DOI:10.1021/acsnano.0c03488http://doi.org/10.1021/acsnano.0c03488 .
Wang X, Chen Y, Fang Y, Zhang J, Gao S, Lou X W . Angew Chem Int Ed , 2019 . 58 ( 9 ): 2675 - 2679 . DOI:10.1002/anie.201812387http://doi.org/10.1002/anie.201812387 .
Xiao Y, Hwang J Y, Belharouak I, Sun Y K . ACS Energy Lett , 2017 . 2 ( 2 ): 364 - 372 . DOI:10.1021/acsenergylett.6b00660http://doi.org/10.1021/acsenergylett.6b00660 .
Yao Y, Zhu Y, Huang J, Shen J, Li C . Electrochimica Acta , 2018 . 271 242 - 251 . DOI:10.1016/j.electacta.2018.03.144http://doi.org/10.1016/j.electacta.2018.03.144 .
Jiang T, Bu F, Feng X, Shakir I, Hao G, Xu Y . ACS Nano , 2017 . 11 ( 5 ): 5140 - 5147 . DOI:10.1021/acsnano.7b02198http://doi.org/10.1021/acsnano.7b02198 .
Chen Z, Li S, Zhao Y, Aly Aboud M F, Shakir I, Xu Y . J Mater Chem A , 2019 . 7 ( 46 ): 26342 - 26350 . DOI:10.1039/C9TA10184Ehttp://doi.org/10.1039/C9TA10184E .
Bu F, Xiao P, Chen J, Aly Aboud M F, Shakir I, Xu Y . J Mater Chem A , 2018 . 6 ( 15 ): 6414 - 6421 . DOI:10.1039/C7TA11111Hhttp://doi.org/10.1039/C7TA11111H .
He J, Manthiram A . Adv Energy Mater , 2020 . 10 ( 41 ): 2002654 DOI:10.1002/aenm.202002654http://doi.org/10.1002/aenm.202002654 .
Zhang L, Liu D, Muhammad Z, Wan F, Xie W, Wang Y, Song L, Niu Z, Chen J . Adv Mater , 2019 . 31 ( 40 ): 1903955 DOI:10.1002/adma.201903955http://doi.org/10.1002/adma.201903955 .
Lin C, Niu C, Xu X, Li K, Cai Z, Zhang Y, Wang X, Qu L, Xu Y, Mai L . Phys Chem Chem Phys , 2016 . 18 ( 32 ): 22146 - 22153 . DOI:10.1039/C6CP03624Dhttp://doi.org/10.1039/C6CP03624D .
Zhao Q, Zhu Q, Miao J, Guan Z, Liu H, Chen R, An Y, Wu F, Xu B . ACS Appl Mater Interfaces , 2018 . 10 ( 13 ): 10882 - 10889 . DOI:10.1021/acsami.8b00225http://doi.org/10.1021/acsami.8b00225 .
Xiao P, Bu F, Yang G, Zhang Y, Xu Y . Adv Mater , 2017 . 29 ( 40 ): 1703324 DOI:10.1002/adma.201703324http://doi.org/10.1002/adma.201703324 .
Gottschling K, Savasci G, Vignolo-González H, Schmidt S, Mauker P, Banerjee T, Rovó P, Banerjee T, Rovó, P, Ochsenfeld C, Lotsch B V . J Am Chem Soc , 2020 . 142 ( 28 ): 12146 - 12156 . DOI:10.1021/jacs.0c02155http://doi.org/10.1021/jacs.0c02155 .
Ma H C, Chen G J, Huang F, Dong Y B . J Am Chem Soc , 2020 . 142 ( 29 ): 12574 - 12578 . DOI:10.1021/jacs.0c04722http://doi.org/10.1021/jacs.0c04722 .
Peng Y, Huang Y, Zhu Y, Chen B, Wang L, Lai Z, Zhang Z, Zhao M, Tan C, Yang N, Shao F, Han Y, Zhang H . J Am Chem Soc , 2017 . 139 ( 25 ): 8698 - 8704 . DOI:10.1021/jacs.7b04096http://doi.org/10.1021/jacs.7b04096 .
Lafferentz L, Eberhardt V, Dri C, Africh C, Comelli G, Esch F, Hecht S, Grill L . Nat Chem , 2012 . 4 ( 3 ): 215 - 220 . DOI:10.1038/nchem.1242http://doi.org/10.1038/nchem.1242 .
Liu W, Luo X, Bao Y, Liu Y P, Ning G H, Abdelwahab I, Li L, Nai C T, Hu Z G, Zhao D, Liu B, Quek S Y, Loh K P . Nat Chem , 2017 . 9 ( 6 ): 563 - 570 . DOI:10.1038/nchem.2696http://doi.org/10.1038/nchem.2696 .
Kissel P, Murray D J, Wulftange W J, Catalano V J, King B T . Nat Chem , 2014 . 6 ( 9 ): 774 - 778 . DOI:10.1038/nchem.2008http://doi.org/10.1038/nchem.2008 .
Liu K, Qi H, Dong R, Shivhare R, Addicoat M, Zhang T, Sahabudeen H, Heine T, Mannsfeld S, Kaiser U, Zheng Z, Feng X . Nat Chem , 2019 . 11 ( 11 ): 994 - 1000 . DOI:10.1038/s41557-019-0327-5http://doi.org/10.1038/s41557-019-0327-5 .
Zhong Y, Cheng B, Park C, Ray A, Brown S, Mujid F, Lee J U, Zhou H, Suh J, Lee K H, Mannix A J, Kang, K, Sibener S J, Muller D A, Park J . Science , 2019 . 366 ( 6471 ): 1379 DOI:10.1126/science.aax9385http://doi.org/10.1126/science.aax9385 .
Sakaushi K, Antonietti M . Accounts Chem Res , 2015 . 48 ( 6 ): 1591 - 1600 . DOI:10.1021/acs.accounts.5b00010http://doi.org/10.1021/acs.accounts.5b00010 .
Zhu X, Tian C, Veith G M, Abney C W, Dehaudt J, Dai S . J Am Chem Soc , 2016 . 138 ( 36 ): 11497 - 11500 . DOI:10.1021/jacs.6b07644http://doi.org/10.1021/jacs.6b07644 .
Zhou T, Zhao Y, Choi J W, Coskun A . Angew Chem Int Ed , 2019 . 58 ( 47 ): 16795 - 16799 . DOI:10.1002/anie.201908513http://doi.org/10.1002/anie.201908513 .
Liu M, Guo L, Jin S, Tan B . J Mater Chem A , 2019 . 7 ( 10 ): 5153 - 5172 . DOI:10.1039/C8TA12442Fhttp://doi.org/10.1039/C8TA12442F .
Katekomol P, Roeser J, Bojdys M, Weber J, Thomas A . Chem Mater , 2013 . 25 ( 9 ): 1542 - 1548 . DOI:10.1021/cm303751nhttp://doi.org/10.1021/cm303751n .
Bojdys M J, Jeromenok J, Thomas A, Antonietti M . Adv Mater , 2010 . 22 ( 19 ): 2202 - 2205 . DOI:10.1002/adma.200903436http://doi.org/10.1002/adma.200903436 .
Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S . Angew Chem Int Ed , 2020 . 59 ( 15 ): 6007 - 6014 . DOI:10.1002/anie.201914424http://doi.org/10.1002/anie.201914424 .
Troschke E, Grätz S, Lübken T, Borchardt L . Angew Chem Int Ed , 2017 . 56 ( 24 ): 6859 - 6863 . DOI:10.1002/anie.201702303http://doi.org/10.1002/anie.201702303 .
Liu J, Zan W, Li K, Yang Y, Bu F, Xu Y . J Am Chem Soc , 2017 . 139 ( 34 ): 11666 - 11669 . DOI:10.1021/jacs.7b05025http://doi.org/10.1021/jacs.7b05025 .
Zhao R, Niu C, Aly Aboud M F, Shakir I, Yu C, Xu Y . Sci China Chem , 2020 . 63 ( 7 ): 966 - 972 . DOI:10.1007/s11426-020-9720-1http://doi.org/10.1007/s11426-020-9720-1 .
Zhuang J, Xu X, Du Y, Wu K, Chen L, Hao W, Wang J, Yeoh W K, Wang X, Dou S X . Phys Rev B , 2015 . 91 ( 16 ): 161409 DOI:10.1103/PhysRevB.91.161409http://doi.org/10.1103/PhysRevB.91.161409 .
Liu C C, Feng W, Yao Y . Phys Rev Lett , 2011 . 107 ( 7 ): 076802 DOI:10.1103/PhysRevLett.107.076802http://doi.org/10.1103/PhysRevLett.107.076802 .
Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L, Wu K, Wang X, Dou S X . Sci Adv , 2016 . 2 ( 7 ): e1600067 DOI:10.1126/sciadv.1600067http://doi.org/10.1126/sciadv.1600067 .
Liu J, Yang Y, Lyu P, Nachtigall P, Xu Y . Adv Mater , 2018 . 30 ( 26 ): 1800838 DOI:10.1002/adma.201800838http://doi.org/10.1002/adma.201800838 .
Chen X, Li Y, Wang L, Xu Y, Nie A, Li Q, Wu F, Sun W, Zhang X, Vajtai R, Ajayan P M, Chen L, Wang Y . Adv Mater , 2019 . 31 ( 29 ): 1901640 DOI:10.1002/adma.201901640http://doi.org/10.1002/adma.201901640 .
Chen X, Zhang H, Ci C, Sun W, Wang Y . ACS Nano , 2019 . 13 ( 3 ): 3600 - 3607 . DOI:10.1021/acsnano.9b00165http://doi.org/10.1021/acsnano.9b00165 .
Liu, J, Lyu, P, Zhang Y, Nachtigall P, Xu Y . Adv Mater , 2018 . 30 ( 11 ): 1705401 DOI:10.1002/adma.201705401http://doi.org/10.1002/adma.201705401 .
Niu C, Lee H, Chen S, Li Q, Du J, Xu W, Zhang J G, Whittingham M S, Xiao J, Liu J . Nat Energy , 2019 . 4 ( 7 ): 551 - 559 . DOI:10.1038/s41560-019-0390-6http://doi.org/10.1038/s41560-019-0390-6 .
Niu C, Liu J, Chen G, Liu C, Qian T, Zhang J, Cao B, Shang W, Chen Y, Han J, Du J, Chen Y . J Power Sources , 2019 . 417 70 - 75 . DOI:10.1016/j.jpowsour.2019.02.004http://doi.org/10.1016/j.jpowsour.2019.02.004 .
Zhang K, Zhang B, Weng M, Zheng J, Li S, Pan F . Phys Chem Chem Phys , 2019 . 21 ( 19 ): 9883 - 9888 . DOI:10.1039/C9CP02117Ehttp://doi.org/10.1039/C9CP02117E .
Häupler B, Wild A, Schubert U S . Adv Energy Mater , 2015 . 5 ( 11 ): 1402034 DOI:10.1002/aenm.201402034http://doi.org/10.1002/aenm.201402034 .
Duan H, Lyu P, Liu J, Zhao Y, Xu Y . ACS Nano , 2019 . 13 ( 2 ): 2473 - 2480 . DOI:10.1021/acsnano.8b09416http://doi.org/10.1021/acsnano.8b09416 .
0
Views
37
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution